成正比例的量教案教学设计导入整理
成正比例的量教案教学设计导入整理
未知
摘要:暂无摘要
关键词:成正比例的量教案教学设计导入整理
正文
正比例教学设计
石佛口小学张靖雪
教学内容:冀教版《数学》六年级下册第7~9页。
教学目标:
1.结合具体实例,经历认识成正比例的量的过程。
2.知道正比例的意义,能判断两种量是否成正比例关系,能找出生活中成正比例的实例,并进行交流。
3.对显示生活中成正比例关系的事物有好奇心,在判断成正比例量的过程中,能进行有条理的思考。
课前准备:多媒体课件。
一、问题情境
1.师生谈话.
师:同学们,随着社会的发展和道路的建设,汽车是越来越多,我想咱们很多同学都坐过汽车。你们知道汽车每小时行驶多少千米吗?
学生可能会有不同的意见,学生说的有道理就给予肯定,对超出150千米的进行安全教育。如:
车跑得太快,容易出现问题,高速公路上一般限速120千米等。
师:谁知道汽车上用什么记录跑的距离呢?
生:里程表。
2.用课件展示教材上的问题情境,让学生了解情境中的数学信息,并计算出汽车1小时行驶多少千米。启发学生解释计算的合理性。
师:请大家看课件。
课件展示汽车8点开始行驶到9点停止时里程表上数字的变化。
师:从刚才的资料中,你了解到什么情况?
学生可能会说:
●汽车8点开始行驶,9点停车,行驶了1小时。
●汽车行驶时,里程表上的数字是8724千米,汽车停止时里程表上的数字是8814千米。师:根据里程表上的数字,能计算出“汽车1小时行了多少千米吗?”怎样算?
生1:用8814减去8724就是汽车1小时行驶的路程。
师:谁能说一说为什么这样算?
生2:因为汽车没跑时里程表上是8724千米,跑了1小时,里程表上是8814千米,多出来的千米数就是汽车1小时跑的路程。
师:说的真好,请同学们算一算,这辆汽车1小时跑了多少千米?
学生口算
3.提出问题(2)的要求生独立完成并汇报结果。
用多媒体出示表格。
4.让学生观察表中的数据,说一说发现了什么?
学生可能会说:
●每增加1小时,路程就增加90千米;
●在这个过程中速度是不变的,都是每小时90千米。
●时间越长,所行驶的路程就越长。
二、认识成正比例
◆行程问题
1.提出“写出相对应的路程和时间的比,并求出比值”的要求。
师:现在请大家写出相对应的路程和时间的比,并求出比值。
生独立完成,展示结果:
观察写出的比和求出的比值,交流发现了什么?
学生可能回答:
●比值都是90。
●比值都相等。
●比值就是汽车的速度。
师:同学们说得很好,这个90,既是路程和时间的比,也是汽车的速度。
师:我们以前学过路程、时间和速度的数量关系式:速度×时间=路程。根据刚才写出的比和比值,还可以写出一个关于路程、时间和速度的关系式。谁来说说是什么?
2.在教师的启发下,由学生归纳出路程、时间和速度的关系式:路程/时间=速度(一定)
4.提出“议一议”的问题,鼓励学生用自己的语言说明。先独自思考再小组交流然后汇报。
师:哪个小组的来说说在速度一定的情况下,路程和时间有什么关系?
学生可能会说:
●速度一定,时间越长,行驶的路程越长。
●路程随着时间按比例扩大。
●路程是时间的倍数。
在行程问题中,路程随着时间的变化而变化,时间增加,路程也就随着增长;反之时间减少,路程也就随着缩小。而且,路程与时间的比值一定也就是速度一定。我们说路程和时间这两种量成正比例。这就是我们今天要学习的新知识:正比例。
板书课题:正比例。
师:在行程问题中,当速度一定时,路程与时间成正比例。生活中还有很多类似的问题,比如:购物问题。
◆购物问题
教师说明生活中有不少类似的问题,并出示买笔问题。让学生自主计算,然后生独自完成填表。请大家看课件:
课件出示:
师:买一支自动笔1.6元,请同学们算一算买2支、3支、5支、6支、7支、8支各花多少钱?
学生计算完后,指名说计算结果,得出下表:
师:观察表中数据,你发现了什么规律?
学生可能会说:
●买自动笔的数量越多,花的钱就越多。
●单价一定,也就是花的钱数和买自动笔支数比值一定。
●买自动笔的数量越少,花的钱就越少。
●花的钱数和买的数量是成比例的量。
师:说得很好。那你能像路程问题一样写出一个式子表示总价、数量和单价之间的关系吗?试一试!
学生自主尝试,然后小组交流,汇报:
3.提出“议一议”的问题。
师:买自动笔的总价和买自动笔的数量这两种量成正比例吗?为什么?
学生可能会说:
●是正比例。因为自动笔的单价一定,所以购买的数量越多,所花的钱数越多;反之购买的数量越少,所花的钱数越少。
师:谁能用一句话说出总价和数量的关系呢?
●单价一定,买笔的总价和买自动笔的数量成正比例。
4.提出:分析两个例子,你发现它们有什么共同点?给学生充分发言的机会。
像上面两个问题中,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量。它们的关系叫做正比例关系。
5.提出:成正比例关系的量需要具备哪几个条件?给学生充分发现的机会。
学生可能会说:
●这两个量的比值一定。
●一个量扩大,另一个也按比例扩大,一个量缩小,另一个量也按比例缩小。
●这两种量是关联的。
●一个量扩大,另一个量也成倍数增加
三、尝试应用
让学生看试一试中的题,先自己判断并和同学交流,然后指名回答。重点指导学生用正比例的定义进行判断。第(3)题只是要学生说出“每月支出的钱数越多(少),剩下的钱数就越少(多),所以不成正比例”或说出“每月支出的钱数和剩下的钱数不是相除的关系”即可。
教师谈话并提出蓝灵鼠的问题,让学生举例并说明理由。
师:刚才我们判断了两种量是否成正比例,生活中还有许多成正比例关系的例子和同学交流一下。
学生可能会说出许多,只要合理,就给予肯定。
四、谈收获
文档信息
- 格式: PDF
- 页数: 未知页
- 字数: 未知
- 上传时间: 2018-04-28 10:22:00
- 下载次数: None
- 浏览次数: 86
- 积分: 5
- 收藏: 0
作者信息
5ygggwenku_1921
来自:学校:滦州市雷庄镇石佛口小学
相关文档
下载提示
下载文档后,您可以获得:
- 完整无水印文档
- 高清阅读体验
- 随时保存查看
- 支持打印下载