加法的运算律教学设计第二课时
加法的运算律教学设计第二课时
未知
摘要:暂无摘要
关键词:加法的运算律教学设计第二课时
正文
《加法运算律》
教学目标:
1、使学生理解并掌握加法交换律和加法结合律,并能够用字母来表示加法交换律和结合律。
2、使学生经历探索加法交换律和结合律的过程,通过对熟悉的实际问题的解决进行比较和分析,发现并概括出运算律。
3、使学生在数学活动中获得成功的体验,进一步增强对数学的兴趣和信心,初步形成独立思考和探究问题的意识、习惯。
教学重点:
使学生理解并掌握加法交换律和加法结合律,能用字母来表示加法交换律和结合律。
教学难点:
使学生经历探索加法交换律和结合律的过程,发现并概括出运算规律。
课程资源的开发与利用:多媒体课件
教学过程:
一、创设情境,初步感知
1、课前谈话(讲“朝三暮四”的故事)
听了这个故事,你有什么感想呢?(早晚吃的个数交换、总数不变)
2、情境引入
(1)谈话:同学们喜欢体育活动吗?谁来说说你最喜欢哪些体育活动?(自由说)
(2)媒体出示情境图,这是每天大课间活动情景?说说他们都在干什么呢?(生自由说)
(3)师:你能提出用加法计算的问题吗?
1、参加跳绳的一共有多少人?
②参加活动的女生一共有多少人?
③参加活动的一共有多少人?
(2)我们先来解决第一个问题:参加跳绳的一共有多少人?
你们能马上口头列式并口算出结果吗?
指名回答,教师出示:28+17=45(人),为什么这样列式?每个数字各表示什么?(男生的人数+女生的人数=一共的人数)
追问:还有不同的算式吗?在学生回答后,教师出示:17+28 =45(人)
观察比较这两个不同算式的计算结果。提问:你们发现了什么?
引导学生说出:28+17和17+28的结果都是45。
教师接着指出:这两道算式的得数相同,我们可以把这两道算式写成这样的等式。(板书:28+17=17+28)
(如果有学生说出这是加法交换律,就问你能说说什么是加法交换律吗?如果有学生说出:交换加数的位置和不变,就及时指出,我们不能根据一个例子就得出一般的结论,应该多举几个例子,多观察几组不同数目的算式,才能从中发现规律。)
2、在列举中验证规律
象这样的等式你会写吗?试试看,越多越好。
谁愿意来交流。
提问:你写了几个?说说看。
根据学生回答,教师小黑板板书算式,
有没有比她多的。
提问:指着板书,你们写的时候有没有什么规律?
学生能说到加数不变,交换位置,结果是一样的就行。
按照这样的规律,如果老师给你时间你还能写吗?
能写几个?无数个,写不完,用省略号表示(板书……)
3、在反思中概括规律
有这样规律的算式很多,写不完,谁能用一句话概括出这个规律。(四人一组讨论,然后交流后汇报。)
用课件出示加法交换律的文字表术法。用语言表示加法交换律很长,又比较难记。你能用自己喜欢的方法把这个规律简明的表示出来吗?可以用图形、字母、文字代替两个加数。
四人小组合作。教师巡视搜集信息。
估计情况:甲数+乙数=乙数+甲数,……
请同学起来交流:
如果没说到:假如我们用a来表示第一个加数,用b来表示第二个加数,那怎样表示这个规律呢?板书:a+b=b+a。
小结:用图形,用字母,用文字来表示这类等式都起着相同的作用,简单明了的表示出这类等式的规律:(用手势比划)“交换两个加数的位置,和不变”。这一运算规律,我们称为“加法交换律”。习惯上,我们用小写字母表示加法交换律a+b=b+a。
5.看第二个问题,谁能马上列出算式,17+23,马上说出不同的算式?应用了? (加法交换律)
指出:我们过去学过用交换加数的位置再加一遍的方法来验算加法,就是用了加法交换律。
三、学习加法结合律。
1.在情境中感受规律
刚才通过解决第一题,我们得到了加法交换律,现在我们再来研究“参加活动的一共有多少人?”看看我们有没有新的发现?
你们会列综合算式解决这个问题吗?说说解题思路关系式。
交流:估计又学生列式28+17+23=68(人),你先算的是什么?(跳绳的人数)添上小括号表示强调先算,板书:(28+17)+23(人)
有没有不同的解法?估计有学生有列式28+(17+23)追问:这样列式先算的是什么?(女生人数)
如果还出现其他算式基本上都归为两种思路,先算跳绳的人数或先算女生的人数。
观察比较这两个不同算式的计算结果,引导学生说出计算结果是一样的,这两个算式也可以写成等式。生一起说,师板书:(28+17)+23=28+(17+23) 提问:它符合加法交换律吗?(不符合,加数的位置没变)
提问:加数的位置没变,那究竟加数的什么发生了变化呢?(相加的顺序不同)引导学生一起说出:左边的算式是先把前两个加数相加,再加第三个数,右边的算式是先把后两个加数相加,再同第一个数相加。但他们的结果是一样的。
2、在计算中验证规律。
再来看这样两组算式:算一算,下面的Ο 里能填上等号吗?汇报前置性作业第四题。
(45+25)+13Ο45+(25+13)
(36+18)+22Ο36+(18+22)
如果有学生直接回答结果是一样的,教师添上=请学生分组验算。
学生回答,教师板书:(45+25)+13=45+(25+13)
(36+18)+22=36+(18+22)
那现在老师来写个算式(28+46)+27=你能按照上面三个等式的规律写出等号后面的吗?
你还能写出类似的等式吗?
指名几个学生回答,追问:你是怎么想的?
回答要点:先算前两个加数的和和先算后两个加数的和的结果是一样的。
有这样规律的算式多吗?
3、揭示加法结合律
观察黑板上的几个等式,你能发现等号两边的算式什么没变?什么变了吗?
小组讨论:(要点:三个加数没变,加数的位置没变,运算顺序变了,和没变)提问:你们组发现了什么规律?谁来总结一下这个规律。这就是我们今天所学的第二个运算律——加法结合律(板书:加法结合律)。你能用a,b,c,表示加法结合律吗?
板书:(a+b)+c=a+(b+c)
跟老师一起读一遍。
小结:刚才我们学会了什么?(加法交换率和加法结合率)什么是加法交换率?什么是加法结合率?你们学会了吗?下面老师来考考你们。
三:巩固内化,拓展应用。
四、小结
今天又什么收获呢?
文档信息
- 格式: PDF
- 页数: 未知页
- 字数: 未知
- 上传时间: 2018-04-27 14:31:00
- 下载次数: None
- 浏览次数: 122
- 积分: 6
- 收藏: 0
作者信息
5ygggwenku_6626
来自:学校:大同市城区第二十九小学校
相关文档
下载提示
下载文档后,您可以获得:
- 完整无水印文档
- 高清阅读体验
- 随时保存查看
- 支持打印下载