10.4 中心对称优秀教案说课稿

未知
2019-06-02 20:56:00
60
None
PDF / 未知页
未知字
积分:1
1 页,共 1

10.4 中心对称优秀教案说课稿

未知

摘要:暂无摘要

关键词:10.4 中心对称优秀教案说课稿

正文

10.4 中心对称

教学目标

1.通过具体实例认识中心对称,探索它的基本性质,理解“连结对称点的线段都经过对称中心,并且被对称中心平分”这一基本性质。

2.理解中心对称图形是旋转角度为180度的特殊的旋转对称图形。

3.对学生进行旋转变换思想的渗透。

教学重难点

重点:中心对称图形的概念及作图。

难点:会画一个图形的中心对称图形。

教学过程

一、提问引入。

下列图形是不是旋转对称图形?是的话,至少需要旋转多少度?

二、导入新授。

1.中心对称图形。

把一个图形绕着某一点旋转180°,如果它能够和另一个图形重合,那么,我们就说这两个图形成中心对称,这个点叫做对称中心。

2.提出问题。

线段、三角形、平行四边形、长方形、正方形、圆是中心对称图形吗?如果是,那么对称中心又在哪里?

指出,中心对称的含义是:(1)两个图形能够完全重合。(2)重合方式有限制,不是把一个图形平移到另一个图形上面,也不是沿一条直线对折,而是把一个图形绕着某一点旋转180°之后与另一个图形重合。由此可见中心对称的图形一定全等,而全等的图形不一定中心对称。

3.点拨精讲。

特征1:关于中心对称的两个图形是全等图形。

如图,在中心对称的两个图形中,对称点A、A′和中心

O在一直线上,并且AO=OA′,另外分别在一直线上的三点还有

;并且

BO=

,CO=

由此得第二个特征。

特征2:在成中心对称的两个图形中,连结对称点的连线都经过对称中心,并且被对称

中心平分。

也就是:

(1)对称中心在任意两个对称点的连线上。

(2)对称中心到一对对称点的距离相等。

根据这个,可以找到关于中心对称的两个图形的对称中心,通常只需连结中心对称图形上的一对对应点,所得线段的中点就是对称中心。同时在证明线段相等时也有应用。

4、中心对称的识别。

反过来说,如果两个图形的对应点连成的线段都经过某一点,并且被平分,那么这两个图形一定关于这一点成中心对称。

三、开放性练习。

如图,已知四边形ABCD和点O,画出四边形A′B′C′D′,使它与已知四边形关于点O成中心对称。

画法:

(1)连结AO并延长AO到A′,使OA′=OA,于是得到点A的对称点A′。

(2)同样画出点B、点C和点D的对称点B′、C′和D′。

(3)顺次连结A′B′、B′C′、C′D′、D′A′。

四边形A′B′C′D′即为所求的四边形。

四、巩固练习。

1.要求学生画出图形。

(1)已知点A关于点O的对称点。

(2)已知线段AB关于点O的对称线段。

(3)已知△ABC关于点O的对称三角形。

2.判断下面说法是否正确。

(1)平行四边形的对角线的顶点关于对角线的交点成中心对称。

(

) (2)平行四边形的对边关于对角线的交点成中心对称。

(

) 3.课本第129页练习第1、2题。

五、课堂小结。

这节课你有什么收获?学到了什么?还有哪些需要老师帮助解决的问题? 1、在成中心对称的两个图形中,连接对称点的线段都经过对称中心,并且被对称中心平分. 2、反过来,如果两个图形的对应点连成的线段都经过某一点,并且都被该点平分,那么这两个图形一定关于这一点成中心对称. 六、布置作业。

课本第129页习题10.4的第2、3、4题。

1 页,共 1

文档信息

  • 格式: PDF
  • 页数: 未知页
  • 字数: 未知
  • 上传时间: 2019-06-02 20:56:00
  • 下载次数: None
  • 浏览次数: 60
  • 积分: 1
  • 收藏: 0

作者信息

教师头像

5ygggwenku_90891

来自:学校:福建省永春达埔中学

下载提示

下载文档后,您可以获得:

  • 完整无水印文档
  • 高清阅读体验
  • 随时保存查看
  • 支持打印下载