8.3 一元一次不等式组教案和课堂实录

未知
2023-10-15 03:43:57
64
None
PDF / 未知页
未知字
积分:1
1 页,共 1

8.3 一元一次不等式组教案和课堂实录

未知

摘要:暂无摘要

关键词:8.3 一元一次不等式组教案和课堂实录

正文

第2课时

不等式(组)应用

教学过程:

一.复习引入:

1.不等式2+3x<9的正整数解是_______,不等式3-4x<8的负整数解是_______。

2.已知(2a24)23abk0,当k取什么值时,b为负数?

二.新课探究:(课本P50)问题3及分析

概括:几个不等式的解集的公共部分,叫做由它们所组成的不等式组的解集。解一元一次不

等式组,通常可以先分别求出不等式组中每一个不等式的解集,再求出它们的公共部分。利用数轴可以直观地帮助我们求出不等式组的解集。

例1:解不等式组:(1)3x12x12x13;(2)

2x82x33x5x23(x1)2x35例2:解不等式组:(1)1(2)

3;x17x3x2422归纳得口决:同大取大,同小取小,大小取中,矛盾无解。

三.基础训练:课内练习P52练习第1、2题。

四.能力拓展:1.若不等式组x10无解,求m的取值范围。

xm0x51x2.解不等式组261,并将解集在数轴上表示出来。

3(x4)4(x3)

2x106x433.解不等式组:(1)x20;(2)2xx3

34x03x2x8五.不等式应用练习

1.有一批货物成本a万元,如果在本年年初出售,可获利10万元,然后将本、利都存入银行,年利率2%;如果在下一年年初出售,可获利12万元,但要付0.8万元货物保管费。试问,这批货物在本年年初出售合算,还是在下一年年初出售合算(本题计算不考虑利息税)。

2.某织布厂有工人200名,为改善经营,增设制衣项目。已知每人每天能织布30米,或利用所织布制衣4件,制衣一件需用布1.5米,将布直接出售,每米可获利2元;将布制成衣后出售,每件获利25元。若每名工人一天只能做一项工作,且不计其它因素,设安排x名工人制衣,则:

(1)一天中制衣所获利润P= 元(用含x的代数式表示)。

(2)一天中剩余布所获利润Q= 元(用含x的代数式表示)

(3)当x取何值时,该厂一天中所获利润W(元)为最大?最大利润为多少元?

3.某校为了奖励在数学竞赛中获奖的学生,买了若干本课外读物准备送给他们。如果每人送3本,则还余8本;如果前面每人送5本,则最后一人得到的课外读物不足3本。设该校买了m本课外读物,有x名学生获奖。请解答下列问题:(1)用含x的代数式表

示m;(2)求出该校的获奖人数及所买课外读物的本数。

4.据有关部门统计:20世纪初全世界共有哺乳类和鸟类动物约13000种,由于环境等因素的影响,到20世纪末这两类动物种类共灭绝约1.9%,其中哺乳类动物灭绝约3.0%,鸟类动物灭绝约1.5%。(1)问20世纪初哺乳类动物和鸟类动物各有多少种?

(2)现在人们越来越意识到保护动物就是保护自己。到21世纪末,如果要把哺乳类动物和鸟类动物的灭绝种数控制在0.9%以内,其中哺乳类动物灭绝的种数与鸟类动物灭绝的种数之比约为6:7。为实现这个目标,鸟类灭绝不能超过多少种?(本题所求结果精确到10位)

5.某球迷协会组织36名球迷拟租乘汽车去比赛场地。可租用的汽车有两种:一种每辆可乘8人,另一种每辆可乘7人,若租用的车子不留空座,也不超载。(1)请你给出不同的租车方案(至少3种)(2)若8个座位的车子的租金是300元/天,4个座位的车子的租金是200元/天,请你设计出费用最少的租车方案,并说明理由。

6.某水库的水位已超过警戒水量P立方米,由于连续暴雨,河水仍以每小时Q立方米的流量流入水库,为了保护大坝安全,需打开泄洪闸。已知每孔泄洪闸每小时泻水量为R立方米,经测算,若打开2孔泄洪闸,30小时可将水位降到警戒线;若打开3孔泄洪闸,12小时可将水位降到警戒线。(1)试用R的代数式分别表示P、Q;(2)现在要求4小时内将水位降到警戒线以下,问至少需

打开几孔泄洪闸。

7.烟台大樱桃闻名全国,今年又喜获丰收,某大型超市从大樱桃生产基地购进一批大樱桃,运输过程中质量损失5%。(超市不负责其它费用)

(1)如果超市把售价在进价的基础上提高5%,超市是否亏本?通过计算说明。

(2)如果超市要获得至少20%的利润,那么大樱桃售价最低应提高百分之几?(结果精确到0.1)

8.某果品公司急需将一批不易存放的水果从A市运到B市销售.现有三家运输公司可供选择,这三家运输公司提供的信息如下:

运输单运输速度运输费用

包装与装卸包装与装卸费用

(元)

1500 1000 700 (千米/小(元/千米)

时间

(小时)

6 8 10 4 2 3 甲公司

60 乙公司

50 丙公司

100 解答下列问题:

(1)若乙、丙两家公司的包装与装卸及运输的费用总和恰好是甲公司的2倍,求A、B两市的距离(精确到个位);

(2)如果A、B两市的距离为s千米,且这批水果在包装与装卸以及运输过程中的损耗为300元/时,那么要使果品公司支付的总费用(包装与装卸费用、运输费用及损耗三项之和)最小,应选择哪家运

输公司?

9.现计划把甲种货物1240吨和乙种货物880吨用一列货车运往某地,已知这列货车挂有A、B两种不同规格的货车车厢共40节,使用A型车厢每节费用为6000元,使用B型车厢每节费用为8000元。(1)设运送这批货物的总费用为y万元,这列货车挂A型车厢x节,试写出y与x之间的函数关系式。

(2)如果每节A型车厢最多可装甲种货物35吨和乙种货物15吨,每节B型车厢最多可装甲种货物25吨和乙种货物35吨,装货时按此要求安排A、B两种车厢的节数,那么共有哪几种安排车厢的方案?

(3)在上述方案中,哪个方案运费最省?最少运费为多少元。

六.小结:1.不等组的解集的意义:(略)

2.数形结合,借助数轴来确定解集。

七.作业:P54习题8.3第1、2、3题。

1 页,共 1

文档信息

  • 格式: PDF
  • 页数: 未知页
  • 字数: 未知
  • 上传时间: 2023-10-15 03:43:57
  • 下载次数: None
  • 浏览次数: 64
  • 积分: 1
  • 收藏: 0

作者信息

教师头像

5ygggwenku_90861

来自:学校:汝阳县靳村乡初级中学

下载提示

下载文档后,您可以获得:

  • 完整无水印文档
  • 高清阅读体验
  • 随时保存查看
  • 支持打印下载