成正比例的量教学设计及说课稿

未知
2018-04-23 16:54:00
647
None
PDF / 未知页
未知字
积分:5
1 页,共 1

成正比例的量教学设计及说课稿

未知

摘要:暂无摘要

关键词:成正比例的量教学设计及说课稿

正文

认识正比例

教学目标:

1.结合具体事例,经历认识和判断成正比例的量的过程。

2.知道正比例的意义,能判断两种量是否成正比例,能找出生活中成正比例的实例,并进行交流。

3.对现实生活中成正比例的事物有好奇心,在判断成正比例的量的过程中,能进行有条理的思考。

教学重、难点:根据正比例的意义,判断两个相关联的量是不是正比例。

相关联的量的变化规律。

课前准备:实物投影、课件。

教学过程:

一、潜心激励,导入新课

师:同学们,随着社会的发展和道路的建设,汽车是越来越多,我想咱们很多同学都坐过汽车。你们知道汽车每小时行驶多少千米吗?

学生可能会有不同的意见,学生说的有道理就给与肯定,对超出150千米的进行安全教育。如:车跑得太快,容易出现问题,高速公路上一般限速120千米等。

师:谁知道汽车上用什么记录跑的距离呢?

生:里程表。

学生给不出,教师介绍。

师:汽车有一个装置,是专门记录汽车行驶的路程的。

板书:里程表

这节课我们来学习一个与里程有关的数学问题——正比例。

二、自主探究,学习新知

(一)路程问题

师:请大家看课件。课件展示汽车8点开始行驶到9点停止时里程表上数字的变化。

师:从刚才的资料中,你了解到什么情况?

学生可能会说:

●汽车8点开始行驶,9点停车,行驶了1小时。

●汽车行驶时,里程表上的数字是8724千米,汽车停止时里程表上的数字是8814千米。

师:你们观察的很仔细!它就是汽车的里程表。根据里程表上的数字,能计算出“汽车1小时行了多少千米吗?”怎样算?

生:用8814减去8724就是汽车1小时行驶的路程。

师:谁能说一说为什么这样算?

生:因为汽车没跑时里程表上是8724千米,跑了1小时,里程表上是8814千米,多

出来的千米数就是汽车1小时跑的路程。

师:说的真好,请同学们算一算,这辆汽车1小时跑了多少千米?

学生口算,教师板书:

8814-8724=90(千米) 师:如果汽车的速度不变那么,汽车2小时行驶多少千米?

用课件出示空白表格。学生边答,教师边填数。

师:3小时行驶了多少千米?

师:4小时、5小时、6小时呢?

学生的回答,师生共同完成表格。

师:观察表格中的数据,你发现了什么?

学生可能会说:

●每增加1小时,路程就增加90千米;

●在这个过程中速度是不变的,都是每小时90千米。

●时间越长,所行驶的路程就越长。

(二)认识成正比例

◆行程问题

师:现在请大家写出相对应的路程和时间的比,并求出比值。

师生共同完成,板书结果:

师:观察写出的比和比值,你发现了什么?

学生可能回答:

●比值都是90。

●比值都相等。

●比值就是汽车的速度。

师:同学们说得很好,这个90,既是路程和时间的比,也是汽车的速度。

师:我们以前学过路程、时间和速度的数量关系式:速度×时间=路程。根据刚才写出的比和比值,还可以写出一个关于路程、时间和速度的关系式。谁来说说是什么?

学生说,教师板书

师:这个关系式中,什么量是变化的,什么量是不变的?

生:在这个关系式中路程和时间是变化的,速度是永远不变的。

师:速度永远不变,就是说速度是一定的。(在关系式后面写出一定。)

师:谁来说说在速度一定的情况下,路程和时间有什么关系?

学生可能会说:

●速度一定,时间越长,行驶的路程越长。

●路程随着时间按比例扩大。

●路路程是时间的倍数。

师:在行程问题中,路程随着时间的变化而变化,时间增加,路程也就随着增长;反之时间减少,路程也就随着缩小。而且,路程与时间的比值一定也就是速度一定。我们说路程和时间这两种量成正比例。这就是我们今天要学习的新知识:正比例。

板书课题:正比例。

(二)买笔问题

师:在行程问题中,当速度一定时,路程与时间成正比例。生活中还有很多类似的问题,比如:购物问题。 请大家看大屏幕

师:买一支自动笔1.6元,请同学们算一算买2支、3支、5支、6支、7支、8支各花多少钱?

学生计算完后,指名说计算结果,教师填在表格中。得出下表:

师:观察表中数据,你发现了什么规律?

学生可能会说:

●买自动笔的数量越多,花的钱

就越多。

●单价一定,也就是花的钱数和买自动笔支数比值一定。

●买自动笔的数量越少,花的钱就越少。

●花的钱数和买的数量是成比例的量。

师:说得很好。那你能像路程问题一样写出一个式子表示总价、数量和单价之间的关系吗?试一试!

学生自主尝试,然后指名交流,教师板书:

师:买自动笔的总价和买自动笔的数量这两种量成正比例吗?为什么?

学生可能会说:

●是正比例。因为自动笔的单价一定,所以购买的数量越多,所花的钱数越多;反之购买的数量越少,所花的钱数越少。

师:谁能用一句话说出总价和数量的关系呢?

●单价一定,买笔的总价和买自动笔的数量成正比例。

师:请同学们分析一下上面的两个例子和数量关系式,你们发现它们有什么共同点?

学生可能会说:

(1)在行程问题中,速度一定,路程随着时间的变化而变化,时间越长,路程越长;反之,时间越短,路程也就越短。在购物问题中,单价一定,总价随着数量的变化而变化,数量越多,总价就越多;反之,数量越少,总价也就越少。

(2)它们都是有两个量变化,一个量不变。

(3)都是两个变化量的比值不变。

第(2)、(3)如说法没有,教师可启发或参与交流。

师:“像上面两个问题中,两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值一定,这两种量就叫做成正比例的量。它们的关系叫做正比例关系。这段话在数学书的第19页请大家打开书,看书。

读一读,并想一想判断两种量是否成正比例关系,需要哪些条件?给学生一点时间让其认真阅读教材。

师:我们已经知道什么叫做成正比例关系的量。谁来说一说两个成正比例关系的量需要具备哪几个条件?

学生可能会说:

●这两个量的比值一定。

●一个量扩大,另一个也按比例扩大,一个量缩小,另一个量也按比例缩小。

●这两种量是关联的。

●一个量扩大,另一个量也成倍数增加。

三、合作交流,展示引导

师:下面请同学们看试一试,谁能判断一下题中的两种量是不是成正比例,并说明理由。先同桌互相说一说。

给学生一点同桌讨论的时间,然后指名回答。教师进行及时提问。如:

生:飞机飞行的速度不变,飞行的路程和时间成正比例。

师:谁能用自己的话说明理由呢?

生1:飞机飞行的速度不变,就是飞行距离与飞行时间的比值一定,那么,飞行时间越长,飞行距离也就越远。所以,飞行路程和飞行时间成正比例。

生2:飞机飞行的速度不变,飞行的时间越长,飞行的路程也越远。而

且按比例扩大。(也可能说成成倍数增加)

师:第二个事例,谁来说一说你是怎样判断的?

生:每千克苹果的价钱一定,就是苹果的单价移动,付出的钱越多,买的苹果就越多。所以,付出的钱数和购买苹果的数量成比例。

师:第三个问题,每月支出的钱数和剩下的钱数是否成正比例?

生:每月收入一定,每月支出的钱数和剩下的钱数不成正比例。

师:为什么?每月收入一定,支出的钱数和剩下的钱数也是有关系的,为什么不成比例?谁来解释一下?

学生可能会有不同说法:

●虽然,它们是相关的量,但‘每月的收入’不是‘支出的钱数’与‘剩下的钱数’的比值。

●支出的钱数和剩下的钱数不是相除的关系。它们的关系是:每月收入-支出钱数=剩余的钱数。

学生说得有道理就给与肯定。

师:同学们说的很好,看来判断两个量是不是成正比例关系,只看有关系还不行,关键要看这两个量相除的商是不是一定。

四、练习反馈,巩固新知

师:我们生活中像这样的相关联的量还有很多。请大家看练一练,让学生自己读题并判断,先同桌互相交流,再指名回答,重点说一说判断的理由。 五、课堂小结,梳理回顾

同学们,这节课你都有什么收获呢?

1 页,共 1

文档信息

  • 格式: PDF
  • 页数: 未知页
  • 字数: 未知
  • 上传时间: 2018-04-23 16:54:00
  • 下载次数: None
  • 浏览次数: 647
  • 积分: 5
  • 收藏: 0

作者信息

教师头像

5ygggwenku_1921

来自:学校:石家庄市北翟营小学

下载提示

下载文档后,您可以获得:

  • 完整无水印文档
  • 高清阅读体验
  • 随时保存查看
  • 支持打印下载