实际测量ppt配用优秀获奖教案
实际测量ppt配用优秀获奖教案
未知
摘要:暂无摘要
关键词:实际测量ppt配用优秀获奖教案
正文
课题:解决问题
教学目标:
1.经历综合运用知识解决稍复杂的实际问题的过程。
2.能综合运用知识解决现实生活中的实际问题,能表达解决问题的过程。
3.获得运用数学知识解决问题的成功体验,发展数学应用能力。
课前准备:一大桶矿泉水;每个组一瓶没有商标的矿泉水,一个水杯,直尺和绳子。
教学方案:
一、问题情境
1.教师谈话并点明要研究的问题。拿出一桶矿泉水和一瓶矿泉水,让学生估计:一桶矿泉水大约等于多少瓶矿泉水?
师:同学们,我们每天都要喝水,今天,我们就来研究一下和水有关的问题。看,老师这有一大桶矿泉水,你们每个组都有一瓶矿泉水,请同学们估计一下,这一大桶矿泉水大约等于多少瓶矿泉水?
指名发言。教师不作评价。
2.讨论:怎样可以判断估计的对不对?给学生充分发表不同意见的机会。师:怎样来判断估计的对不对呢?
学生可能说到以下方法:
(1)测量并计算出各自的容积,做除法。
(2)用秤称出各自的质量,做除法。
(3)把大桶中的水倒进空瓶子,看能倒满多少瓶。
二、解决问题
1.老师说明材料准备的情况,然后请各组派一个代表,共同测量出矿泉水桶的高和直径。
师:同学们说的这些办法都可以。下面,我们就用老师准备的工具来解决今天的问题,因为老师就准备了一桶矿泉水。这样,请各组出一名代表,共同测量一下这个矿泉水桶的底面直径和高,好吗?
各组出一人测量矿泉水桶,教师板书出数据。提示桶的厚度可以不计。
2.小组合作,测量一瓶矿泉水的直径和高,并完成问题(2)的计算。交流时,关注计算的结果是否一致。师:我们已经知道了矿泉水桶的底面直径和高,现在,请各组测量一下自己组的矿泉水瓶,然后,算一算一桶矿泉水大约等于多少瓶矿泉水。
小组合作测量并计算,然后交流测量和计算的结果。如果出现不同结果,让学生分析一下原因。对开始估计正确或差不多的同学给予表扬。
3.让学生小组合作解决第(3)个问题。注意指导学生的测量方法。师:同学们注意到没有,你们桌子上还有一个水杯,下面请同学们测量这个水杯的容积,并算一算一桶矿泉水可以倒满多少杯水。请各组同学讨论一下:测量这个口杯的容积,需要测量哪些数据?
生:需测量水杯的内直径和高。
师:怎样测量?需要注意什么?
生1:先测量外直径和高,再量出壁厚和杯底厚度。
生2:外直径还要减去两个壁厚才能得到内直径。外高度减去杯底厚度是内厚度。
4.提出问题(4),由小组学生独立完成。师:好,请小组同学先测量出有关数据,计算出口杯的容积,再算一算一桶矿泉水可以倒满多少杯水。
学生动手测量、计算。教师巡视指导。然后,交流计算结果。如果出现不同结果,分析一下原因。
师:通过刚才的测量、计算,我们已经知道了一桶矿泉水的容积大约是X升。我们每天都要喝水,如果按每人每天饮水1500毫升计算,一桶矿泉水能满足一个三口之家几天的饮水需要?同学们自己试着算一算。
学生独立完成,教师巡视,个别指导。然后全班交流。
三、蓄水池问题
1.教师谈话引出蓄水池问题,请学生看图,说一说从图中了解到哪些数据及有关信息,能推算出哪些数据。
师:桶和瓶子都是用来盛水的工具,现实生活中,人们还经常建蓄水池来存水。下面,我们就来解决一个建蓄水池的问题。请看课本第41页,先看一看蓄水池的图。
学生看书中的图。
师:谁来说一说,从图中你知道了哪些信息?
学生可能说到:
●这个蓄水池是圆柱形的。
●蓄水池高2米,从里面量直径是3米。
●蓄水池底的厚度与池壁的厚度相同,都是0.3米。
师:根据这些数据,我们可以推算出哪些数据呢?
生1:蓄水池的深度为2-0.3=1.7(米)。
生2:蓄水池的外圆直径是3+0.3×=3.6(米)。
2.提出问题(1),学生独立完成后全班订正。
师:很好。那请同学们算一算,这个蓄水池的容积有多少立方米?
学生算完后,全班订正。
答案:3.14×(3÷2)²×1.7=12.0105(立方米)
3.提出问题(2),帮助学生理解题意,让学生明白池壁的体积就是砖垒的厚度是0.3米的圆筒的体积。然后学生自主计算,最后全班交流。师:请同学们读第(2)题,谁来说一说“用砖修建池壁”是什么意思?
生:池壁不包括池底,是用砖垒一圈,也就是壁厚0.3米的圆筒部分。
如果学生没有说出来,教师介绍。
4.老师口述问题(3)的意思,让学生独立计算,然后交流计算的方法和结果。师:请同学们试着算一算,建这个蓄水池需要多少块砖?
学生自主计算,教师巡视,个别指导。
师:谁来说一说你是怎样算的?
生:先计算外面大圆柱的体积:
3.14×(3.6÷2)²×2=20.3472(立方米);
再计算内部小圆柱的体积:
3.14×(3÷2)²×2=14.13(立方米);然后用大圆柱体积减去小圆柱
体积就是蓄水池壁的体积:20.3472-14.13=6.2172(立方米)。
要准备的砖:
6.2172×500=3108.6≈3109(块)
5.提出问题(4),请学生独立完成,然后全班交流。师:同学们解决了用多少砖的问题。你们知道吗?为了使蓄水池有更好防渗漏的效果,蓄水池用砖垒好后,还要在内外壁以及蓄水池的底面上全部抹上水泥,如果按每平方米用5千克水泥计算,需要准备多少千克水泥呢?
学生独立完成,然后交流计算结果。
答案:
外壁面积:3.6×3.14×2=22.608(平方米);
内壁面积:3×3.14×1.7=16.014(平方米);
底面面积:3.14×(3÷2)²=7.065(平方米);
抹水泥总面积:22.608+16.014+7.065=45.687(平方米);
需要水泥:5×45.687=228.435(千克)。
师:大家已经知道,1立方米水重1吨,如果每次按蓄水池容积的85%蓄水,算一算,一次蓄水大约多少吨?
学生独立完成,然后交流。
答案:12.0105×85%×1≈10(吨)
四、课堂练习
1.“练一练”第1题。鼓励学生自己独立完成。然后交流计算方法和结果。
师:现实生活中,有许多实际问题都可以利用我们学过的数学知识来解决。下面请同学们看“练一练”的第1题。相信你们一定可以自己解决问题。
学生独立完成,教师个别指导。
师:谁来说一说你是怎样算的?
生1:圆柱形奶桶的容积:
(40÷2)²×3.14×50=62800(立方厘米)=62.8(升)
生2:这个奶桶可装奶:
62.8×1.04=65.312≈65(千克)
生3:第(3)小题要先计算出每个奶瓶的容积,再计算用多少奶瓶:
(8÷2)²×3.14×11=552.64(立方厘米),
62800÷552.64≈114(个)。
2.“练一练”第2题。先让学生读题,了解纸箱中饮料是怎样摆的,然后自己解答。交流时,说一说是怎样算的。师:请同学们自己读一读第2题。
学生读题。
师:从题中,你知道了什么?
生1:一箱饮料有24筒,每排6筒,一共有4排。
生2:每筒饮料的高是12厘米,底面直径是6.5厘米。
师:根据这些情况,你能计算出这个纸箱的体积至少有多少立方分米吗?试一试!
学生尝试,教师个别指导。
师:谁来说一说,你是怎样算的?
生:根据每排有6筒饮料,可以求出这个纸箱里面的长:
6.5×6=39(厘米)
同样可以求出纸箱里面的宽:
6.5×4=26(厘米)
再根据饮料的高是12厘米,可以确定纸箱里面的高。所以,这个纸箱的体积至少是:
39×26×13=13182(立方厘米)=13.182(立方分米)
文档信息
- 格式: PDF
- 页数: 未知页
- 字数: 未知
- 上传时间: 2022-11-27 17:18:01
- 下载次数: None
- 浏览次数: 180
- 积分: 6
- 收藏: 0
作者信息
5ygggwenku_1935
来自:学校:乐亭县第三实验小学
相关文档
下载提示
下载文档后,您可以获得:
- 完整无水印文档
- 高清阅读体验
- 随时保存查看
- 支持打印下载