代入法解二元一次方程组教学实录及点评

未知
2019-05-15 09:52:00
120
None
PDF / 未知页
未知字
积分:1
1 页,共 1

代入法解二元一次方程组教学实录及点评

未知

摘要:暂无摘要

关键词:代入法解二元一次方程组教学实录及点评

正文

《代入法解二元一次方程组》教案

教学目标

1.使学生会用代入消元法解二元一次方程组;

2.理解代入消元法的基本思想体现的“化未知为已知”,“变陌生为熟悉”的化归思想方法;

3.在本节课的教学过程中,逐步渗透朴素的辩证唯物主义思想.

教学重点和难点

重点:用代入法解二元一次方程组.

难点:代入消元法的基本思想.

课堂教学过程设计

一、从学生原有的认知结构提出问题

一个农民有若干只鸡和兔子,它们共有50个头和140只脚,问鸡和兔子各有多少?

设农民有x只鸡,y只兔,则得到二元一次方程组

对于列出的这个二元一次方程组,我们如何求出它的解呢?(学生思考)

教师引导并提出问题:若设有x只鸡,则兔子就有(50-x)只,依题意,得

2x+4(50-x)= 140

从而可解得,x=30,50-x=20,使问题得解.

问题:从上面一元一次方程解法过程中,你能得出二元一次方程组

串问题,进一步引导学生找出它的解法)

(1)在一元一次方程解法中,列方程时所用的等量关系是什么?

(2)该等量关系中,鸡数与兔子数的表达式分别含有几个未知数?

(3)前述方程组中方程②所表示的等量关系与用一元一次方程表示的等量关系是否相同?

(4)能否由方程组中的方程②求解该问题呢?

(5)怎样使方程②中含有的两个未知数变为只含有一个未知数呢?

(以上问题,要求学生独立思考,想出消元的方法)

结合学生的回答,教师作出讲解.

由方程①可得y=50-x③,即兔子数y用鸡数x的代数式50-x表示,由于方程②中的y与方程①中的y都表示兔子的只数,故可以把方程②中的y用(50-x)来代换,即把方程③代入方程②中,得

2x+4(50-x)=140,

解得

x=30.

将x=30代入方程③,得y=20.

即鸡有30只,兔有20只.

本节课,我们来学习二元一次方程组的解法.

二、讲授新课

例1

解方程组

解方程组

y2x1(1)3x2y1(2)分析:若此方程组有解,则这两个方程中同一个未知数就应取相同的值.因此,方程①中的y就可用方程②中的表示x的代数式来代替.

解:把①代入②,得

3x-2(2x-1)=1,

3x-4x+2=1,

x=1

把x=1代入①,得y=1 .

方程组的解为

x1y1(本题应以教师讲解为主,并板书,同时教师在最后应提醒学生,与解一元一次方程一样,要判断运算的结果是否正确,需检验.其方法是将所求得的一对未知数的值分别代入原方程组里的每一个方程中,看看方程的左、右两边是否相等.检验可以口算,也可以在草稿纸上验算)

教师讲解完例1后,结合板书,就本题解法及步骤提出以下问题:

1.方程①代入哪一个方程?其目的是什么?

2.为什么能代入?

3.只求出一个未知数的值,方程组解完了吗?

4.把已求出的未知数的值,代入哪个方程来求另一个未知数的值较简便?

在学生回答完上述问题的基础上,教师指出:这种通过代入消去一个未知数,使二元方程转化为一元方程,从而方程组得以求解的方法叫做代入消元法,简称代入法.

三、课堂练习

用代入法解下列方程组:

四、师生共同小结

在与学生共同回顾了本节课所学内容的基础上,教师着重指出,因为方程组在有解的前提下,两个方程中同一个未知数所表示的是同一个数值,故可以用它的等量代换,即使“代入”成为可能.而代入的目的就是为了消元,使二元方程转化为一元方程,从而使问题最终得到解决.

五、作业

用代入法解下列方程组:

课后反思:

1 页,共 1

文档信息

  • 格式: PDF
  • 页数: 未知页
  • 字数: 未知
  • 上传时间: 2019-05-15 09:52:00
  • 下载次数: None
  • 浏览次数: 120
  • 积分: 1
  • 收藏: 0

作者信息

教师头像

5ygggwenku_90846

来自:学校:珙县巡场中学校

下载提示

下载文档后,您可以获得:

  • 完整无水印文档
  • 高清阅读体验
  • 随时保存查看
  • 支持打印下载