几何类应用问题教案和学案内容
几何类应用问题教案和学案内容
未知
摘要:暂无摘要
关键词:几何类应用问题教案和学案内容
正文
6.3实践与探索
第一课时
学习目标
1、学生通过独立思考,积极探索,从而发现围成的长方形的长和宽在发生变化,但在围的过程中,长方形的周长不变,由此便可建立“等量关系”。
2、通过问题3的学习,学生初步体会数形结合思想的作用。
重点、难点
1.重点:通过分析图形问题中的数量关系,建立方程解决问题。
2.难点:找出“等量关系”列出方程。
教学过程
一、定向诱导
1)列一元一次方程解应用题的步骤是什么? 2)长方形的周长公式、面积公式。
今天我们一块来分析图形问题中的数量关系,用方程来解决问题
二、自学探究
问题3.用一根长60厘米的铁丝围成一个长方形。
(1)使长方形的宽是长的专,求这个长方形的长和宽。
(2)使长方形的宽比长少4厘米,求这个长方形的面积。
(3)比较(1)、(2)所得两个长方形面积的大小,还能围出面积更大的长方形吗? 三、展示答疑
给学生时间独立探索解法,并互相交流。第(1)小题一般能由学生独立或合作完成,教师也可提示:与几何图形有关的实际问题,可画出图形,在图上标注相关量的代数式,借助直观形象有助于分析和发现数量关系。
分析:由题意知,长方形的周长始终不变,长与宽的和为60÷2=30(厘米),解决这个问题时,要抓住这个等量关系。
第(2)小题的设元,可让学生尝试、讨论,对学生所得到的结论都应给予鼓励,在讨论交流的基础上,使学生知道,不是每道应用题都是直接设元,要认真分析题意,找出能表示整个题意的等量关系,再根据这个等量关系,确定如何设未知数。
(3)当长方形的长为18厘米,宽为12厘米时 长方形的面积=18×12=216(平方厘米)
当长方形的长为17厘米,宽为13厘米时 长方形的面积=221(平方厘米) ∴(1)中的长方形面积比(2)中的长方形面积小。
问:(1)、(2)中的长方形的长、宽是怎样变化的?你发现了什么?如果把(2)中的宽比长少“4厘米”改为3厘米、2厘米、1厘米、0.5厘米长方形的面积有什么变化?猜想宽比长少多少时,长方形的面积最大呢?并加以验证。 通过计算,发现随着长方形长与宽的变化,长方形的面积也发生变化,并且长和宽的差越小,长方形的面积越大,当长和宽相等,即成正方形时面积最大。
实际上,如果两个正数的和不变,当这两个数相等时,它们的积最大,通过以后的学习,我们就会知道其中的道理。
想一想:让问题由平面图形过度到立体图形,用同样的方法分析数量关系。
四、拓展延伸
通过两次考考你进行变式训练让学生会分析图形问题中的数量关系,进一步体会到运用方程解决问题的关键是抓住等量关系。
五、反馈总结
(1)反馈教科书第14页练习1、2。
第l题,组织学生讨论,寻找本题的“等量关系”。
用一块橡皮泥捏出的各种形状的物体,它的体积是不变的。因此等量关系是:圆柱的体积=长方体的体积。
第2题,先让学生根据生活经验,开展讨论,解这道题的关键是什么?题中的等量关系是什么? 通过思考,使学生明确要解决“能否完全装下”这个问题,实质是比较这两个容器的容积大小,因此只要分别计算这两个容器的容积,结果发现装不下,接着研究第2个问题,“那么瓶内水面还有多高”呢?如果设瓶内水面还有x厘米高,那么这里的等量关系是什么? 等量关系是:玻璃杯中的水的体积十瓶内剩下的水的体积=原来整瓶水的体积。从而列出方程
(2)小结
本节课同学们认真思考,积极探索,通过分析图形问题中的数量关系,建立方程解决问题,进一步体会到运用方程解决问题的关键是抓住等量关系,有些等量关系是隐藏的,不明显,同学们要联系实际,积极探索,找出等量关系。
六、作业
智能训练P14 1、2、3、4
文档信息
- 格式: PDF
- 页数: 未知页
- 字数: 未知
- 上传时间: 2019-06-28 16:08:00
- 下载次数: None
- 浏览次数: 120
- 积分: 1
- 收藏: 0
作者信息
5ygggwenku_90838
来自:学校:浚县白寺乡第一初级中学
相关文档
下载提示
下载文档后,您可以获得:
- 完整无水印文档
- 高清阅读体验
- 随时保存查看
- 支持打印下载