6.1 从实际问题到方程教学目标

未知
2019-05-15 09:06:00
159
None
PDF / 未知页
未知字
积分:1
1 页,共 1

6.1 从实际问题到方程教学目标

未知

摘要:暂无摘要

关键词:6.1 从实际问题到方程教学目标

正文

第6章

一元一次方程

教材简析

本章的内容包括:一元一次方程的相关概念及其解法;利用一元一次方程分析与解决实际问题.方程是一种重要的描述现实世界的数学模型.教材以实际问题为主线引入方程和方程的解的概念,探索等式的性质以及解一元一次方程,然后通过实践与探索,经历“问题情境——建立数学模型——解答——应用与拓展”的过程,体会数学建模思想.一元一次方程是中考的必考内容,题型主要是选择题和填空题,也有少量的解答题.主要考查一元一次方程的解的意义的理解、解一元一次方程以及列一元一次方程解决实际问题.贴近生活、具有时代气息的一元一次方程应用题是历年各地中考的热点题型之一.

教学指导

【本章重点】

一元一次方程的解及应用.

【本章难点】

列一元一次方程解决实际问题,提高数学应用能力.

【本章思想方法】

1.区分解方程中的两种变形.一是“同解变形”,变形的实质是“形变解不变”;另一种是“恒等变形”,变形的实质是“形变值不变”.

2.掌握方程思想.方程思想在本章内容的体现主要是列方程解决实际问题.解决问题的思路是分析题意,找出题目中的相等关系,列出一元一次方程,解方程,得出答案.

课时计划

6.1

从实际问题到方程1课时

6.2

解一元一次方程6课时

6.3

实践与探索3课时

6.1 从实际问题到方程

教学目标

一、基本目标

1.理解方程及方程的解的概念.

2.掌握检验某个值是不是方程的解的方法.

二、重难点目标

【教学重点】

根据实际问题中的等量关系,了解方程及方程的解的概念.

【教学难点】

会用方程描述具体问题中的数量关系和变化规律,建立数学模型.

教学过程

环节1

自学提纲,生成问题

【5 min阅读】

阅读教材P2~P3的内容,完成下面练习.

【3 min反馈】

1.含有未知数的等式叫做方程. 2.完成下面各题.

(1)某校七年级328名师生乘车外出春游,已有2辆校车共可乘坐64人,还需租用44座的客车多少辆?

解:设需要租用客车x辆,共可乘坐44x人.列方程为44x+64=328. (2)在课外活动中,张老师发现同学们的年龄基本都是13岁,就问同学们:“我今年451岁,经过几年后你们的年龄整好是我年龄的?”

31解:设经过x年后同学的年龄是老师年龄的,而经过x年后同学的年龄是(13+x)岁,老31师的年龄是(45+x)岁.列方程为13+x=(45+x). 3环节2

合作探究,解决问题

活动1

小组讨论(师生互学) 【例1】根据题意设未知数,并列出方程(不必求解).

(1)有两个工程队,甲队有30人,乙队有10人,问怎样调整两队的人数,才能使甲队的人数是乙队人数的7倍;

(2)七(1)班的同学准备去划船,租了若干条船,他们计算了一下,如果比原计划多租1条船,那么正好每条船坐6人;如果比原计划少租1条船,那么正好每条船坐9人.问这个班共有多少名同学?

【互动探索】(引发学生思考)根据实际问题列方程的步骤有哪些?题目中有哪些等量关系?

【解答】(1)设从乙队调x人去甲队,则乙队现在有(10-x)人,甲队有(30+x)人.根据甲队的人数是乙队人数的7倍列出方程如下:

30+x=7(10-x).

xx-1条或+1条,由此联立可得(2)设这个班共有x名同学,则原计划租船可表示为69如下方程:

xx-1=+1. 69【互动总结】(学生总结,老师点评)根据题意列方程的一般步骤:(1)弄清题意和其中的数量关系,用字母表示适当的未知数;(2)找出题目中有关数量的相等关系;(3)用代数式表示出这个等量关系中涉及的量,根据等量关系得到方程.

【例2】检验2,1,0三个数是否为方程3(x+1)=2(2x+1)的解.

【互动探索】(引发学生思考)判断一个数是不是原方程的解,必须用这个数替换方程中的未知数,并计算方程左、右两边的值是否相等.

【解答】将x=2分别代入原方程左、右两边,左边=3×(2+1)=9,右边=2×(2×2+1)=10.因为左边≠右边,所以x=2不是原方程的解.

将x=1分别代入原方程左、右两边,左边=3×(1+1)=6,右边=2×(2×1+1)=6.因为左边=右边,所以x=1是原方程的解.

将x=0分别代入原方程左、右两边,左边=3×(0+1)=3,右边=2×(2×0+1)=2.因为左边≠右边,所以x=0不是原方程的解.

【互动总结】(学生总结,老师点评)使方程左、右两边相等的未知数的值称为方程的解.检验方程的解的步骤:(1)将数值分别带入原方程的左、右两边进行计算;(2)比较方程左、右两边的值;(3)下结论,若方程左右两边的值相等,则该数是方程的解;反之则不是方程的解.

活动2

巩固练习(学生独学) 1.下列式子是方程的有

(

B

) 235+24=59;3x-18>33;2x-5=0;+15=0. xA.1个

C.3个

B.2个

D.4个

2.小明准备为希望工程捐款,他现在有20元,以后每月打算存10元,若设x月后他能捐出100元,则下列所列方程正确的是

(

A

) A.10x+20=100

C.20-10x=100

3.检验下列数值是不是方程的解.

(1)3y-1=2y+1(y=2;y=4);

(2)3(x+1)=2x-1(x=2;x=-4).

解:(1)y=2是方程3y-1=2y+1的解;y=4不是方程3y-1=2y+1的解.

(2)x=2不是方程3(x+1)=2x-1的解;x=-4是方程3(x+1)=2x-1的解.

环节3

课堂小结,当堂达标

(学生总结,老师点评) B.10x-20=100 D.20x+10=100

概念方程方程的解根据实际问题列方程练习设计

请完成本课时对应练习!

1 页,共 1

文档信息

  • 格式: PDF
  • 页数: 未知页
  • 字数: 未知
  • 上传时间: 2019-05-15 09:06:00
  • 下载次数: None
  • 浏览次数: 159
  • 积分: 1
  • 收藏: 0

作者信息

教师头像

5ygggwenku_90832

来自:学校:浚县善堂镇第一初级中学

下载提示

下载文档后,您可以获得:

  • 完整无水印文档
  • 高清阅读体验
  • 随时保存查看
  • 支持打印下载