10.4 中心对称教案设计
10.4 中心对称教案设计
未知
摘要:暂无摘要
关键词:10.4 中心对称教案设计
正文
10.4.1中心对称的教学设计
麦积区龙园中学
张建华
教学目标:
1、知识与技能目标:
(1)了解中心对称图形、中心对称、对称中心和对称点的概念,理解中心对称的性质。
(2)掌握运用中心对称的性质作图的方法。
2、过程与方法目标:
通过对中心对称的性质的探究及运用,初步学会从正反两方面去思考问题的数学思考方法以及类比思想的应用。
3、情感、态度与价值观目标:
通过一系列探索活动,培养学生严谨的科学态度和探索的精神,经历数学知识融于生活实际的学习过程,体验数学学习的快乐。
教学重、难点:
教学重点:中心对称图形和中心对称的概念及性质。
教学难点:中心对称图形和中心对称的区别与联系。
教学过程:
一、课堂导入
(1)这些图形有什么共同的特征?
(2)这些图形都可以绕某个点旋转哪个角度后与原来的图形重合?
设计意图:通过给学生提供生活素材,吸引学生的注意力,激发好奇心和求知欲。
二、探索新知,合作探究
<一>中心对称图形
【自学指导】
1.自学教材P127,说出什么是中心对称图形?什么是中心对称?什么是对称中心,对称点?
(1)得出概念和课题:——“中心对称”
(2)研究概念:中心对称图形:在平面内,一个图形绕着中心旋转1800后能与自身重合,那么这个图形叫做中心对称图形,这个中心叫对称中心。
句话中的关键字眼有哪些?
让学生找出身边的中心对称图形,让教师让学生欣赏生活中的中心对称图形。
2、研究常见几何图形中的中心对称图形
在五角星,迎风招展的旗子,八齿轮,八角形,圆中,找出中心对称图形。
3、判断中心对称图形
(完成导学案)
<二>成中心对称
1、观察下列图形,它与中心对称图形有何异同?
O
(学生总结异同)
相同之处:旋转1800后都能完全重合
不同之处:先前的中心对称图形都只有一个图形,而这幅图形有两个图形,得出两幅图成中心对称的概念
2、
把一个图形绕某一个点旋转180º,如果它能够与另一个图形重合,那么就说这两个图形成中心对称,这个点叫做对称中心;这两个图形中的对应点叫做关于中心的对称点。
3、研究“中心对称图形”与“成中心对称”的区别与联系
4、研究成中心对称的性质
(1)找出成中心对称的两幅图形中的对应点连线。
(2)得出对应点的连线与与对称中心的正反关系:在成中心对称的两个图形中,连结对称点的线段都经过对称中心,并且被对称中心平分.
反之,如果两个图形的所有对应点连成的线段都经过某一点,并且都被该点平分,那么这两个图形关于这一点成中心对称. 三、综合实践,学以致用
例1. 如下图,选择点O为对称中心,画出点A关于点O的对称点A、
A.
O.
例2、
如图,已知△ABC和点O,画出△DEF,使△DEF和△ABC关于点O成中心对称。
练一练
4. 已知四边形ABCD和点O画四边形A′B′C′D′,使它与已知四边形关于点O对称。
5. 如图中, 试画一条直线, 把该图形分成两部分, 且使两部分面积相等.
第4题让学生利用中心对称的性质做相关计算,
第5题培养学生的发散思维。
四、课堂小结,感悟收获
学生自己总结:这节课我学到了……
五、作业布置,课外延伸
1、
必做题:
习题10.4第3,4题
2、
选做题:
已知四边形ABCD关于点P成中心对称的四边形EFGH,试画出四边形EFGH.
D C
A B .
E
文档信息
- 格式: PDF
- 页数: 未知页
- 字数: 未知
- 上传时间: 2019-06-24 09:19:00
- 下载次数: None
- 浏览次数: 104
- 积分: 1
- 收藏: 0
作者信息
5ygggwenku_90891
来自:学校:天水市麦积区龙园中学
相关文档
下载提示
下载文档后,您可以获得:
- 完整无水印文档
- 高清阅读体验
- 随时保存查看
- 支持打印下载