复习题第二课时教学设计
复习题第二课时教学设计
未知
摘要:暂无摘要
关键词:复习题第二课时教学设计
正文
列一元一次不等式组解决实际问题
--专题复习
1.某校计划购买一批篮球和足球,已知购买2个篮球和1个足球共需320元,购买3个篮球和2个足球共需540元.
(1)求每个篮球和每个足球的售价;
(2)如果学校计划购买这两种球共50个,用于此次购球的总资金不低于5400元,且不超过5500元,求本次购球方案.
解:(1)设每个篮球的售价为x元,每个足球的售价为y元,
依题意,得:,
解得:.
(2)设购进篮球m个,则购进足球(50﹣m)个,
依题意,得:解得:25≤m≤30,
∴共有6种购球方案.方案一:购买篮球25个、足球25个;方案二:购买篮球26个、足球24个;方案三:购买篮球27个、足球23个;方案四:购买篮球28个、足球22个;方案五:购买篮球29个、足球21个;方案六:购买篮球30个、足球20个.
2.某商场准备进一批两种不同型号的衣服,已知购进A种型号衣服9件,B种型号衣服10件,则共需1810元;若购进A种型号衣服12件,B种型号衣服8件,共需1880元;已知销售一件A型号衣服可获利18元,销售一件B型号衣服可获利30元,要使在这次销售中获利不少于699元,且A型号衣服不多于28件.
(1)求A、B型号衣服进价各是多少元?
(2)若已知购进A型号衣服是B型号衣服的2倍还多4件,则商店在这次进货中可有几种方案并简述购货方案.
解:(1)设A种型号的衣服每件x元,B种型号的衣服y元,
则:,
解之得.
,
(2)设B型号衣服购进m件,则A型号衣服购进(2m+4)件,
可得:解之得∵m为正整数,
∴m=10、11、12,2m+4=24、26、28.
答:有三种进货方案:
(1)B型号衣服购买10件,A型号衣服购进24件;
(2)B型号衣服购买11件,A型号衣服购进26件;
(3)B型号衣服购买12件,A型号衣服购进28件.
,
,
3.某园林部门决定利用现有的349盆甲种花卉和295盆乙种花卉搭配A、B两种园艺造型共50个,摆放在迎宾大道两侧.已知搭配一个A种造型需甲种花卉8盆,乙种花卉4盆;搭配一个B种造型需甲种花卉5盆,乙种花卉9盆. (1)某校九年级某班课外活动小组承接了这个园艺造型搭配方案的设计,问符合题意的搭配方案有几种?请你帮助设计出来;
解:(1)设搭建A种园艺造型x个,则搭建B种园艺造型(50-x)个.
解不等组得:31≤x≤33 因为x为整数,所以x=31,32,33 所以共有三种方案:
①A:31,B:19;
②A:32,B:18;
③A:33,B:17
4.某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐赠一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件. (1)求饮用水和蔬菜各有多少件?
(2)现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件,有哪几种方案可供选择?
(2)设租用甲种货车m辆,则租用乙种货车(8-m)辆.
解得2≤m≤4. 又因为m为整数,所以m=2或3或4.所以安排甲、乙
两种货车时有3种方案:
方案①:安排甲车2辆,乙车6辆;
方案②:安排甲车3辆,乙车5辆;
方案③:安排甲车4辆,乙车4辆.
文档信息
- 格式: PDF
- 页数: 未知页
- 字数: 未知
- 上传时间: 2019-06-27 10:45:00
- 下载次数: None
- 浏览次数: 110
- 积分: 1
- 收藏: 0
作者信息
5ygggwenku_90842
来自:学校:射洪县太乙学校
相关文档
下载提示
下载文档后,您可以获得:
- 完整无水印文档
- 高清阅读体验
- 随时保存查看
- 支持打印下载