阅读与思考 费尔马大定理优质课一等奖

未知
2019-04-28 13:58:00
98
None
PDF / 未知页
未知字
积分:1
1 页,共 1

阅读与思考 费尔马大定理优质课一等奖

未知

摘要:暂无摘要

关键词:阅读与思考 费尔马大定理优质课一等奖

正文

费马大定理教学设计

皮埃尔•德•费马无疑是数学史中最令人着迷的家伙之一。他出生在十七世纪法国一个商人家庭,仕途一帆风顺,以至于有资格使用“DE”这个具有贵族姓氏的前缀。费马是个富二代,但他所有的业余时间都用在数学上了。才华横溢的他被《业余大数学家的数学》一书的作者排除在外,“他那么杰出,应该算专业数学家。”当时数学刚从黑暗的中世纪缓过神来,整个欧洲只有牛津大学对数学研究持积极态度。巴黎数学家从十六世纪传下来的守口如瓶并非是一种好传统,不幸的是,“费马大定理”的两个核心人物都继承了这个不太招人喜欢的传统。

一本古希腊数学家丢番图所著的《算术》跟随了费马一生。他在这本书上简单、潦草记下了四十八个评注。这些评注即是一系列数学定理,费马对此要么根本没有解释,要么仅仅给出一点点证明提示。后人的任务便是求证费马潦草笔记的正确性。例如:大于2的任意质数可以表示为4n+1或4n-1两种形式,其中n是某个整数。费马断定第一类质数总是两个平方数之和,而第二类质数永远不能表示成这种形式。质数的这种性质非常简单,但证明这种性质对每一个质数都成立则非常困难。大数学家欧拉经过七年的努力,几乎是在费马去世后的整整一个世纪时,才成功证明。费马说过,他对其每个评注都有一个证明,所以它们是定理。实际上,在后人证明这些评注之前,它们应该叫猜想而非定理。随着时间流逝,费马猜想一个个被证明,除了“费马大定理”

,因而,它也常被叫作“费马最后定理”

读《算术》第二卷时,费马观察着毕达哥拉斯定理——毕达哥拉斯定理也叫勾股定理,它有几十种证明方法。这对费马来说,肯定没有吸引力——忽然灵机一动,如果将毕达哥拉斯方程X2

+Y2

=Z2

中的X、Y、Z的2次幂升级到3次幂会怎样?他发现方程将没有整数解。他试着将其变为4次幂、5次幂……结果都没有任何整数解。在数的无限世界里,竟没有“费马三元组”的位置,这似乎是不可能的。费马在这个结论的第一个边注后面,写下了令一代又一代数学家为之苦恼的一段话:“我有一个对这个命题的十分美妙的证明,这里空白太小,写不下。”

在费马看来,它只不过是随手写在页边的众多数学评注之一。他从没想到,这个问题困扰人类长达三个多世纪之久。尽管他的好友梅森尼不断鼓动,费马仍旧我行我素,拒绝公布他的证明。费马十分满足自己对外界的挑战成功:只有我能证明,而你们不能。他并非与数学界毫无接触,事实上,他与他们通信,在信中费马叙述他的最新定理,却不提供证明。这种明显的挑衅叫他人无法忍受。有人叫他“那个该诅咒的法国佬”

。费马仅有的一次与他人探讨数学的通信是同帕斯卡,他们探讨了概率论。当帕斯卡催促费马发表他的某个成果时,这个喜欢恶作剧的数学家说,“不管我的哪个工作被确定值得发表,我不想其中出现我的名字。”伟人自有其特别之处。我们不能苛求费马改变个性,只能埋怨当时的图书出版商为何不将书籍的页边弄得更大些。如今的书籍并没多大改变,我们有理由相信,假如以后有费马式的数学天才再次降临,我们还会再受一次同样的折磨。

欧拉只证明了3次幂的形式。“数学家之王”高斯虽然没有研究过费马大定理,但他得知女数学家热尔曼(当时他并不知道热尔曼是女性)对证明费马大定理有突破性进展时,一反常态,忘记了他一贯的态度而显得惊喜万分。1825年,两个年纪相差一代的数学家在热尔曼的基础上同时独立证明了5次幂的形式。14年后,法国人证明的7次幂的形式。在热尔曼取得突破性的工作后,法国科学院设立专项奖励,但以后每一次声明成功证明费马大定理的证明都被发现致命漏洞。数学家渐渐绝望,大多数人认为费马大定理无法证明。他们端出笛卡尔的话证明他们的无法证明。笛卡尔说费马在这个问题上吹了牛。

数学与其他学科不同。其他学科由假设开始,然后在自然界或实验室进一步验证它的预言能力。例如,古希腊的德谟克里特猜想万物是由不可分割的原子构成。科学家于十七至十八世纪在实验室中证实了原子的存在,十九世纪末,汤姆逊发现了电子,原子不再不可分割。后来,陆续发现基本粒子与反物质粒子。现在物理学家猜想基本粒子是由更小的“弦”构成。数学则一开始就要求唯真。它从公理出发,经过逻辑论证,得出某种结论,一经证明便永远是对错分明。如果不经证明,便有犯错的可能。例如:欧拉猜想X4

+Y4

+Z4

=W4

不存在整数解。二百多年来,没人证明,也没人举出反例。直到1998年,有人发现了这个解:26824404

+153656394

+187967604

=206156734

这个解已经相当大了。事实上,欧拉方程有无数个解。如果数学不经证明,那么它所构成的数学大厦便有随时坍塌的可能。数学家不能容忍这种危险的存在。

关于费马大定理,有无数数学家的传奇,甚至包括了决斗、自杀、绝望。值得一提的是它的奖金的设立人却仅是一名数学爱好者。德国人沃尔夫斯基凯尔失恋后决定自杀,他利用离他设立自杀的时间前的几个小时,在图书馆里翻看数学书籍,如你所料,他看到了费马大定理。费马大定理与其他著名世界数学难题一样,有中学数学水平的人都能看懂。沃尔夫斯基凯尔着迷了,忘记了自杀这回事。他立下遗嘱,以2007年为限,奖励第一个证明费马大定理的人10万马克。奖金的设立使证明费马大定理在全世界范围内真正疯狂起来,以至于负责这笔钱的格丁根皇家科学协会不得不印刷大量的退稿卡片来应付来自各地的信件。

英国人安德鲁•怀尔斯默默埋头费马大定理很多年了。那时费马大定理已转换为证明谷山—志村猜想,但它同样令人绝望。怀尔斯像进行着007的间谍工作,成功地隐瞒了七年。这与他的前辈费马有神似之处,他们都不希望被外界打扰,又同时对荣誉十分渴求。毫不夸张地说,怀尔斯动用了自从人类发明数学以来的几乎所有的知识,汇集了20世纪数论中所有的突破性工作,才证明了费马大定理。他的证明写了满满二百页,被分成六章,由六个世界顶级数学家独立审核。很显然,经过358年的努力,虽然人类成功地证明了费马大定理的正确性。但这个证明用到了费马根本没听说过的模形式、谷山—志村猜想、伽罗瓦群和科利瓦金—弗莱切方法,并且,怀尔斯的证明即使浓缩到最短,也有一百页之多。这与费马留在页边的那段话格格不入。包括很多著名数学家在内的人认为,一定有以十七世纪数学知识为基础的简洁巧妙地证明费马大定理的方法。从这个意义上说,费马大定理至今仍没有完美解决。

记得上世纪八十年代,徐迟一本《哥德巴赫猜想》让全国人民忽然议论起“1+1”和“1+2”来。这其实是哥德巴赫猜想的形象说法。陈景润在1966年证明了“1+2”,证明过程也写了二百多页,离最终的“1+1”只有一步之遥。但人类迄今为止,还在这一步之遥上努力。不仅是数学,每一个科学理论的发现与完善都是由一个或者很多个传奇故事组成,人类探索自然的好奇心永远不会得到满足。科学包含了功用利益,又永远超越着功利主义。这是一个艰辛、充满传奇而又幸福的过程,即使是对数学一知半解的人读来,也觉得惊心动魄,引人入胜。

1 页,共 1

文档信息

  • 格式: PDF
  • 页数: 未知页
  • 字数: 未知
  • 上传时间: 2019-04-28 13:58:00
  • 下载次数: None
  • 浏览次数: 98
  • 积分: 1
  • 收藏: 0

作者信息

教师头像

5ygggwenku_93274

来自:学校:长沙县福临镇福临中学

下载提示

下载文档后,您可以获得:

  • 完整无水印文档
  • 高清阅读体验
  • 随时保存查看
  • 支持打印下载