生活中的数学教学设计第一课时

未知
2018-04-28 09:14:00
92
None
PDF / 未知页
未知字
积分:5
1 页,共 1

生活中的数学教学设计第一课时

未知

摘要:暂无摘要

关键词:生活中的数学教学设计第一课时

正文

《鸽巢问题》教学设计

教学内容:

最简单的鸽巢问题(教材第68页例1和第69页例2)。

教学目标:

1.理解简单的鸽巢问题及鸽巢问题的一般形式,引导学生采用操作的方法进行枚举及假设法探究“鸽巢问题”。

2.体会数学知识在日常生活中的广泛应用,培养学生的探究意识。重点难点:

了解简单的鸽巢问题,理解“总有”和“至少”的含义。

一、游戏导入

4人一组,从1、2、3三个数字中任选一个自己喜欢的数字写在手心里,清老师猜。

二、共同探究,理解鸽巢原理。

(一)出示例1,共同探究验证。

1.老师还能料定:把4支铅笔放进3个笔筒里,不管怎么放,总有一个笔筒里至少放2支铅笔。质疑:大家对老师的说法有什么不理解之处吗?如果学生不能提出疑问,那么老师来提问:“总有”是什么意思?(3个笔筒无论哪个,一定有一个)“至少放2支铅笔”是什么意思?(放2支或2支以上,最少2支)

2.讨论:你认为老师的说法对吗?先让学生凭直觉判断对或错。再指出:对待数学问题,我们要有严谨的态度,只有经过周密的验证才能下结论。那么,可以用什么方法来验证老师的说法对不对呢?学生独

立思考,提出设想。

3.小组合作探究:小组合作验证,验证完成了准备汇报并坐端正。需要笔筒的用纸杯代替笔筒。教师巡视,了解学生验证的情况。

4.小组汇报交流,预设情况如下:

(1)枚举法

请用实物模拟实验的小组先展示,有用画图、数的分解的方法分析的也进行展示。引导学生认识到要把铅笔摆放的所有方式都列举出来,为了不遗漏要做到有序列举(课件展示),指出这种思考方法叫“枚举法”。

(2)假设法

请学生展示并解说其他的方法,如果学生没有想到,教师示范:假设老师的说法是错误的,没有任何笔筒里有2支或2支以上的铅笔,那么每个笔筒里只放1支,剩下1支放入任意一个笔筒中,这个笔筒中就有2支笔了。所以总有一个笔筒中至少有2支铅笔。

集体讨论:让学生充分质疑,充分发表意见,教师适时点拨。教师可连续发问:先在每个笔筒中放1支铅笔,实际上就是在怎样分?为什么一开始就平均分呢?只考虑平均分这一种情况,其他的摆放方法不用考虑了吗?引导学生认识到:先在每个笔筒中放1支铅笔,实际上就是在平均分;平均分,就可以使每个笔筒的铅笔尽可能的少,也就有可能找到和老师说法不一样的情况;平均分已经使每个笔筒中的笔尽可能少了,如果这样都符合要求,那另外的情况肯定也是符合要求的了。

可以用除法算式表示这种分析方法,指出这种思考方法叫做“假设法”。

(3)请学生评价这两种方法。总结结论并板书。

(二)解决变式问题,建立数学模型

1.解决变式问题:

(1)把6支铅笔放进5个笔筒里,不管怎么放,总有一个笔筒里至少放2支铅笔。这种说法对吗?为什么?

先同桌互相说一说,再指名回答。

(2)把6个苹果放进5个抽屉里,不管怎么放,总有一个抽屉里至少放2个苹果。这种说法对吗?为什么?

学生独立思考,指名回答。引导学生认识到:6个苹果相当于6支铅笔,5个抽屉相当于5个笔筒,那么就有同样的结论“总有一个抽屉里至少放2个苹果”。

(3)把7支铅笔放进6个笔筒里,不管怎么放,总有一个笔筒里至少放几支铅笔?为什么?

学生独立思考,指名回答。

(4)把7个篮球放进6个球筐里,不管怎么放,总有一个球筐里至少放2个篮球。这种说法对吗?

学生独立思考,齐答。提问:7个篮球相当于什么?6个球筐相当于什么?

(5)17只鸽子飞进16个鸽巢里,不管怎么飞,总有一个鸽巢里至少飞进2只鸽子。这种说法对吗?

学生独立思考,齐答。提问:17只鸽子相当于什么?16个鸽巢相当于什么?

2.讨论:这些问题有什么相同点吗?有什么规律吗?

引导学生发现:铅笔、苹果、篮球、鸽子都是待分物体,笔筒、抽屉、球筐、鸽巢都可以看作盛放待分物体的“鸽巢”;待分物体都比“鸽巢”多1,都是总有一个“鸽巢”至少放2个待分物体。

引导学生用字母表示:如果“鸽巢”个数用n来表示,待分物体就有(n+1)个,那么总有一个“鸽巢”至少放2个待分物体。并用一句完整的话来描述。

揭示课题:这就是老师所说的那个著名的数学原理——鸽巢原理。(板书课题)

3.普及数学史知识

知道鸽巢原理最早是由谁提出的吗?课件出示:这个原理是组合数学中的一个重要原理,它最早由德国数学家狄利克雷提出并运用于解决数论中的问题,所以该原理又称“狄利克雷原理”。该原理有两个经典案例,一个是把10个苹果放进9个抽屉,总有一个抽屉里至少放了2个苹果,所以这个原理又称为“抽屉原理”;另一个是6只鸽子飞进5个鸽巢,总有一个鸽巢至少飞进2只鸽子,所以也称为“鸽巢原理”(指名读)。

学生齐读课件出示的“鸽巢原理”——把(n+1)个待分物体放进n 个鸽巢,总

学生齐读课件出示的“鸽巢原理”——把(n+1)个待分物体放进n

个鸽巢,总有一个鸽巢里至少放了2个待分物体。

力,体会数学的价值。

三、运用鸽巢原理解决问题

1.请学生解释扑克牌小魔术中的奥秘。引导学生认识到:5人抽出了5张牌,这5张牌相当于5个待分物体,扑克牌有4个花色,相当于4个鸽巢,5张牌归入4个花色,那么总有一个花色至少有2张牌。2.讨论问题:5只鸽子飞进了3个鸽笼,总有一个鸽笼至少飞进了2只鸽子。为什么?

先同桌讨论,再交流,重点引导学生讨论平均分后余下2只鸽子该怎么办。引导学生认识到:为了找到飞进鸽子的至少数,余下的2只鸽子也要尽可能的平均分。

3.解决问题:随意找13位老师,他们中至少有2个人的属相相同。为什么?若是随意找15位、17位老师,还是至少有2个人的属相相同吗?

学生自由发言,互动交流。

四、集体交流:这节课你有什么收获?引导学生从数学知识、数学思考方法等多方面来谈收获。

1 页,共 1

文档信息

  • 格式: PDF
  • 页数: 未知页
  • 字数: 未知
  • 上传时间: 2018-04-28 09:14:00
  • 下载次数: None
  • 浏览次数: 92
  • 积分: 5
  • 收藏: 0

作者信息

教师头像

5ygggwenku_5151

来自:学校:富锦市第十小学

下载提示

下载文档后,您可以获得:

  • 完整无水印文档
  • 高清阅读体验
  • 随时保存查看
  • 支持打印下载