原(逆)命题、原(逆)定理教案及板书设计
原(逆)命题、原(逆)定理教案及板书设计
未知
摘要:暂无摘要
关键词:原(逆)命题、原…教案及板书设计
正文
第1课时
勾股定理的逆定理(1)
教学目标
1.掌握直角三角形的判别条件.
2.熟记一些勾股数.
3.掌握勾股定理的逆定理的探究方法.
重点
探究勾股定理的逆定理,理解并掌握互逆命题、原命题、逆命题的有关概念及关系.
难点
归纳猜想出命题2的结论.
一、复习导入
活动探究
(1)总结直角三角形有哪些性质;
(2)一个三角形满足什么条件时才能是直角三角形?
生:直角三角形有如下性质:(1)有一个角是直角;(2)两个锐角互余;(3)两直角边的平方和等于斜边的平方;(4)在含30°角的直角三角形中,30°的角所对的直角边是斜边的一半.
师:那么一个三角形满足什么条件时,才能是直角三角形呢?
生1:如果三角形有一个内角是90°,那么这个三角形就为直角三角形.
生2:如果一个三角形,有两个角的和是90°,那么这个三角形也是直角三角形.
师:前面我们刚学习了勾股定理,知道一个直角三角形的两直角边a,b与斜边c具有一定的数量关系即a2+b2=c2,我们是否可以不用角,而用三角形三边的关系来判定它是否为直角三角形呢?我们来看一下古埃及人是如何做的?
问题:据说古埃及人用下图的方法画直角:把一根长绳打上等距离的13个结,然后以3个结、4个结、5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.
这个问题意味着,如果围成的三角形的三边长分别为3,4,5,有下面的关系:32+42=52,那么围成的三角形是直角三角形.
画画看,如果三角形的三边长分别为2.5 cm,6 cm,6.5 cm,有下面的关系:2.52+62=6.52,画出的三角形是直角三角形吗?换成三边分别为4 cm,7.5 cm,8.5 cm,再试一试.
生1:我们不难发现上图中,第1个结到第4个结是3个单位长度即AC=3;同理BC=4,AB=5.因为32+42=52,所以我们围成的三角形是直角三角形.
生2:如果三角形的三边长分别是2.5 cm,6 cm,6.5 cm.我们用尺规作图的方法作此三角形,经过测量后,发现6.5 cm的边所对的角是直角,并且2.52+62=6.52. 再换成三边长分别为4 cm,7.5 cm,8.5 cm的三角形,可以发现8.5 cm的边所对的角是直角,且有42+7.52=8.52. 师:很好!我们通过实际操作,猜想结论.
命题2
如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
再看下面的命题:
命题1
如果直角三角形的两直角边长分别为a,b,斜边长为c,那么a2+b2=c2. 它们的题设和结论各有何关系?
师:我们可以看到命题2与命题1的题设、结论正好相反,我们把像这样的两个命题叫做互逆命题.如果把其中的一个叫做原命题,那么另一个叫做它的逆命题.例如把命题1
当成原命题,那么命题2是命题1的逆命题.
二、例题讲解
【例1】说出下列命题的逆命题,这些命题的逆命题成立吗?
(1)同旁内角互补,两条直线平行;
(2)如果两个实数的平方相等,那么这两个实数相等;
(3)线段垂直平分线上的点到线段两端点的距离相等;
(4)直角三角形中30°角所对的直角边等于斜边的一半.
分析:(1)每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用;
(2)理顺它们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假.
解略.
三、巩固练习
教材第33页练习第2题.
四、课堂小结
师:通过这节课的学习,你对本节内容有哪些认识?
学生发言,教师点评.
教学反思:
本节课的教学设计中,将教学内容精简化,实行分层教学.根据学生原有的认知结构,让学生更好地体会分割的思想.设计的题型前后呼应,使知识有序推进,有助于学生理解和掌握;让学生通过合作、交流、反思、感悟的过程,激发学生探究新知的兴趣,感受探索、合作的乐趣,并从中获得成功的体验,真正体现学生是学习的主人.将目标分层后,满足不同层次学生的做题要求,达到巩固课堂知识的目的.
文档信息
- 格式: PDF
- 页数: 未知页
- 字数: 未知
- 上传时间: 2019-06-26 09:42:00
- 下载次数: None
- 浏览次数: 53
- 积分: 1
- 收藏: 0
作者信息
5ygggwenku_93275
来自:学校:汕尾市城区凤山中学
相关文档
下载提示
下载文档后,您可以获得:
- 完整无水印文档
- 高清阅读体验
- 随时保存查看
- 支持打印下载