信息窗一(公因数和最大公因数)教案评析
信息窗一(公因数和最大公因数)教案评析
未知
摘要:暂无摘要
关键词:信息窗一(公因数…教案评析
正文
最大公因数的应用
【教学内容】
利用最大公因数知识解决生活中的实际问题(教材第62页的例3,及教材练习十五第5、6题)。
【教学目标】
让学生能利用最大公因数知识解决生活中的实际问题。
【重点难点】
能正确判断生活中的实际问题是要利用最大公因数知识来解决,并能说出这样想的道理。
教学过程:
【复习导入】
1.什么是公因数?什么是最大公因数?
2.找出每组数的最大公因数。
5和15 21和28 30和18 8和9
11和33 60和48 12和42 4和15
师:看来同学们关于最大公因数这一部分的知识学得是不错的,其实呀,数学和生活是紧密联系的,你能运用学的公因数的知识解决生活中的实际问题吗?小明在生活中就遇到了这样一个问题,他家的贮藏室的地板要装修,你能当设计师,帮他提出装修方案吗?来,我们一起来看小明遇到了怎样的问题?
板书课题: 最大公因数的应用。
【新课讲授】
出示教材第62页例3。
(1)引导学生审题,理解题意。在贮藏室的长方形地面上铺正方形地砖。要求既要铺满,又要都用整块的方砖。
(2)学生以小组为单位,探究如何拼摆。
每组4人,在课前印好画有长方形的方格纸,每人选择一种边长的方砖,试一试,只要画满一条长边,一条宽边就可以。
教师巡视指导,辅导学生。
(3)多媒体演示拼摆过程,进一步验证学生动手操作的情况。
(4)教师:应该怎样选择方砖来铺地呢?
通过交流,得出结论:要使所用的正方形地砖都是整块的,地砖的边长必须既是16的因数,又是12的因数。
(5)12和16的公因数有1、2、4,其中最大公因数是4。所以可选边长是1dm、2dm、4dm的地砖,边长最大的是4dm。
【课堂作业】
1.完成教材第63页练习十五的第5题。
此题是有关两数最大公因数的实际问题。教师要引导学生理解题意,要剪成“同样大小的正方形而没有剩余”。正方形的边长必须既是70的因数又是50的因数,要使正方形的边长最大,所以要找70和50的最大公因数。学生弄清题意后,由学生独立完成,然后全班反馈。
2.完成教材第63页练习十五的第6题。
此题也是有关两数最大公因数的实际问题,“要使每排的人数相
等”则每排的人数必须既是48,又是36的因数,要使每排的人数最多,所以要找48和36的最大公因数,学生理解题意即可完成。
3.完成教材第64页练习十五第7题。
此题求两个数的最大公因数。
4.完成教材第64页练习十五第8题。
此题检验学生公因数是1的数的几种情况,答案不唯一。
5.完成教材第64页练习十五第9题此题检查学生当两数是倍数关系、互质关系、一般关系情况下求最大公因数的能力。
6.完成教材第64页练习十五第10题
填表找规律.
7.完成教材第64页练习十五的第11题。
这一题是有关三个数最大公因数的实际问题。教师要引导学生理解题意,要达到“截成同样长的小棒,不能有剩余”的要求,每根小棒的长必须是12、16和44的公因数。要使每根小棒的长度最长,所以要找出12、16和44的最大公因数,练习时,可让学生分别写出12、16和44的因数,再从中找出它们的最大公因数。
答案:
5:长方形的边长是70和50的最大公因数是10cm,所以小正方形的边长最长是10cm。
6:每排人数是36和48的最大公因数,是12人。
男生:48÷12=4(排) 女生:36÷12=3(排)
【课堂小结】
通过这节课的学习,你有什么收获?
【课后作业】
完成练习册中本课时练习。
教学板书:
最大公因数的应用
几个数公有的因数叫做它们的公因数,公因数中最大的因数叫它们的最大公因数。
(1)两个数没有特殊关系,用列举法找出它们的最大公因数。
(2)两个数是倍数关系,它们的最大公因数是较小数。
(3)两个数公因数只有1,它们的最大公因数是1。
教学反思:
本节课使学生对本课所学知识进行回顾,加深对本课知识的归纳和整理,通过不同类型的题目练习,使学生掌握求最大公因数的方法和技巧,为以后学习通分和计算打基础。让学生学会找分子分母的最大公因数,为以后约分打基础。
文档信息
- 格式: PDF
- 页数: 未知页
- 字数: 未知
- 上传时间: 2018-05-23 14:19:00
- 下载次数: None
- 浏览次数: 134
- 积分: 5
- 收藏: 0
作者信息
5ygggwenku_3154
来自:学校:武汉盘龙城经济开发区第三小学
相关文档
下载提示
下载文档后,您可以获得:
- 完整无水印文档
- 高清阅读体验
- 随时保存查看
- 支持打印下载