复习题20含PPT的教学设计及点评
复习题20含PPT的教学设计及点评
未知
摘要:暂无摘要
关键词:复习题20含PPT的教学设计及点评
正文
第二十章
数据的分析
20.1数据的代表
20.1.1平均数(第一课时)
一、教学目标:
1、使学生理解数据的权和加权平均数的概念
2、使学生掌握加权平均数的计算方法
3、通过本节课的学习,还应使学生理解平均数在数据统计中的意义和作用:描述一组数据集中趋势的特征数字,是反映一组数据平均水平的特征数。
二、重点、难点和难点突破的方法:
1、重点:会求加权平均数
2、难点:对“权”的理解
三、例习题意图分析
1、教材P111的问题及讨论栏目在教学中起到的作用。
(1)、这个问题的设计和讨论栏目在此处安排最直接和最重要的目的是想引出权的概念和加权平均数的计算公式。
(2)、这个讨论栏目中的错误解法是初学者常见的思维方式,也是已学者易犯的错误。在这里安排讨论很得当,起揭示思维误区,警示学生、加深认识的作用。
(3)、客观上,教材P111的问题是一个实际问题,它照应了本节的前言——将在实际问题情境中,进一步探讨它们的统计意义,体会它们在解决实际问题中的作用,揭示了统计知识在解决实际问题中的重要作用。
2、教材P112例1的作用如下:
(1)、解决例1要用到加权平均数公式,所以说它最直接、最重要的目的是及时复习巩固公式,并且举例说明了公式用法和解题书写格式,给学生以示范和模仿。
(2)、这里的权没有直接给出数量,而是以比的形式出现,为加深学生对权的意义的理解。
(3)、两个问题中的权数各不相同,直接导致结果有所不同,这既体现了权数在求加权平均数的作用,又反映了应用统计知识解决实际问题时要灵活、体现知识要活学活用。
3、教材P113例2的作用如下:
(1)、这个例题再次将加权平均数的计算公式得以及时巩固,让学生熟悉公式的使用和书写步骤。
(2)、例2与例1的区别主要在于权的形式又有变化,以百分数的形式出现,升华了学生对权的意义的理解。
(3)、它也充分体现了统计知识在实际生活中的广泛应用。
四、课堂引入:
1、若不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。
某校初二年级共有4个班,在一次数学考试中参考人数和成绩如下:
班级
1班
2班
42 81 3班
45 82 4班
32 79
参考人数
40 平均成绩
80 求该校初二年级在这次数学考试中的平均成绩?下述计算方法是否合理?为什么?
八年级(下)数学教案
x=14(79+80+81+82)=80.5 五、例习题分析:
例1和例2均为计算数据加权平均数型问题,因为是初学尤其之前与平均数计算公式已经作过比较,所以这里应该让学生搞明白问题中是否有权数,即是选择普通的平均数计算还是加权平均数计算,其次若用加权平均数计算,权数又分别是多少?例2的题意理解很重要,一定要让学生体会好这里的几个百分数在总成绩中的作用,它们的作用与权的意义相符,实际上这几个百分数分别表示几项成绩的权。
六、随堂练习:
1、老师在计算学期总平均分的时候按如下标准:作业占100%、测验占30%、期中占35%、期末考试占35%,小关和小兵的成绩如下表:
学生
小关
小兵
位:小时)
寿命
450 550 600 650 700 15 25 作业
80 76 测验
75 80 期中考试
期末考试
71 68 88 90 2、为了鉴定某种灯泡的质量,对其中100只灯泡的使用寿命进行测量,结果如下表:(单只数
20 10 30 求这些灯泡的平均使用寿命?
答案:1.x小关
=79.05
x小兵
=80
2. x
=597.5小时
七、课后练习:
1、在一个样本中,2出现了x1次,3出现了x2次,4出现了x3次,5出现了x4次,则这个样本的平均数为
. 2、某人打靶,有a次打中x环,b次打中y环,则这个人平均每次中靶
环。
3、一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩20%、面试占30%、实习成绩占50%,各项成绩如表所示:
应聘者
甲
乙
笔试
85 面试
83 实习
90 80 85 92 试判断谁会被公司录取,为什么?
4、在一次英语口试中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余为84分。已知该班平均成绩为80分,问该班有多少人?
答案:1.2x13x24x35x4x1x2x3x4
2.axbyab
3.x甲=86.9
x2
=96.5
乙被录取
4.
39人
20.1.1 平均数(第二课时)
一、教学目标:
1、加深对加权平均数的理解
2、会根据频数分布表求加权平均数,从而解决一些实际问题
3、会用计算器求加权平均数的值
二、重点、难点和难点的突破方法:
1、重点:根据频数分布表求加权平均数
2、难点:根据频数分布表求加权平均数
三、例习题的意图分析
1、教材P114探究栏目的意图。
(1)、主要是想引出根据频数分布表求加权平均数近似值的计算方法。
(2)、加深了对“权”意义的理解:当利用组中值近似取代替一组数据中的平均值时,频数恰好反映这组数据的轻重程度,即权。
这个探究栏目也可以帮助学生去回忆、复习七年级下的关于频数分布表的一些内容,比如组、组中值及频数在表中的具体意义。
2、教材P114的思考的意图。
(1)、使学生通过思考这两个问题过程中体会利用统计知识可以解决生活中的许多实际问题
(2)、帮助学生理解表中所表达出来的信息,培养学生分析数据的能力。
3、P114利用计算器计算平均值
这部分篇幅较小,与传统教材那种详细介绍计算器使用方法产生明显对比。一则由于学校中学生使用计算器不同,其操作过程有差别亦不同,再者,各种计算器的使用说明书都有详尽介绍,同时也说明在今后中考趋势仍是不允许使用计算器。所以本节课的重点内容不是利用计算器求加权平均数,但是掌握其使用方法确实可以运算变得简单。统计中一些数据较大、较多的计算也变得容易些了。
四、
课堂引入
采用教材原有的引入问题,学习课本115例题3 五、随堂练习
1、某校为了了解学生作课外作业所用时间的情况,对学生作课外作业所用时间进行调查,下表是该校初二某班50名学生某一天做数学课外作业所用时间的情况统计表
(1)、第二组数据的组中值是多少?
(2)、求该班学生平均每天做数学作业所用时间
2、某班40名学生身高情况如下图,
请计算该班学生平均身高
所用时间t(分钟) 0<t≤10
10<t≤20 20<t≤30 30<t≤40
40<t≤50
50<t≤60
人数
4 6 14 13 9 4
八年级(下)数学教案
答案1.(1).15. (2)28.
2.
165
七、课后练习:
1、某公司有15名员工,他们所在的部门及相应每人所创的年利润如下表
部门
人数
每人创得利润
A 1 20 B 1 5 C 2 2.5 D 4 2 E 2 1.5 F 2 1.5 G 5 1.2 该公司每人所创年利润的平均数是多少万元?
2、下表是截至到2002年费尔兹奖得主获奖时的年龄,根据表格中的信息计算获费尔兹奖得主获奖时的平均年龄?
年龄
28≤X<30 30≤X<32 32≤X<34 34≤X<36 36≤X<38 38≤X<40 40≤X<42 频数
4 3 8 7 9 11 2
3、为调查居民生活环境质量,环保局对所辖的50个居民区进行了噪音(单位:分贝)水平的调查,结果如下图,求每个小区噪音的平均分贝数。
频数
21115 4 16 18 70 80 90 40 50 60 噪音/分贝
答案:1.约2.95万元
2.约29岁
3.60.54分贝
20.1.2 中位数和众数(第一课时)
一、教学目标
1、认识中位数和众数,并会求出一组数据中的众数和中位数。
2、理解中位数和众数的意义和作用。它们也是数据代表,可以反映一定的数据信息,帮助人们在实际问题中分析并做出决策。
3、会利用中位数、众数分析数据信息做出决策。
二、重点、难点和难点的突破方法:
1、重点:认识中位数、众数这两种数据代表
2、难点:利用中位数、众数分析数据信息做出决策。
三、例习题的意图分析
1、教材P117的例4的意图
(1)、这个问题的研究对象是一个样本,主要是反映了统计学中常用到一种解决问题的方法:对于数据较多的研究对象,我们可以考察总体中的一个样本,然后由样本的研究结论去估计总体的情况。
(2)、这个例题另一个意图是交待了当数据个数为偶数时,中位数的求法和解题步骤。(因为在前面有介绍中位数求法,这里不再重述)
(3)、问题2显然反映学习中位数的意义:它可以估计一个数据占总体的相对位置,说明中位数是统计学中的一个重要的数据代表。
(4)、这个例题再一次体现了统计学知识与实际生活是紧密联系的,所以应鼓励学生学好这部分知识。
2、教材P118例5的意图
(1)、通过例5应使学生明白通常对待销售问题我们要研究的是众数,它代表该型号的产品销售最好,以便给商家合理的建议。
(2)、例5也交待了众数的求法和解题步骤(由于求法在前面已介绍,这里不再重述)
(3)、例5也反映了众数是数据代表的一种。
四、课堂引入
严格的讲教材本节课没有引入的问题,而是在复习和延伸中位数的定义过程中拉开序幕的,本人很同意这种处理方式,教师可以一句话引入新课:前面已经和同学们研究过了平均数的这个数据代表。它在分析数据过程中担当了重要的角色,今天我们来共同研究和认识数据代表中的新成员——中位数和众数,看看它们在分析数据过程中又起到怎样的作用。
五、例习题的分析
教材P117例4,从所给的数据可以看到并没有按照从小到大(或从大到小)的顺序排列。因此,首先应将数据重新排列,通过观察会发现共有12个数据,偶数个可以取中间的两个数据146、148,求其平均值,便可得这组数据的中位数。
教材P118例5,由表中第二行可以查到23.5号鞋的频数最大,因此这组数据的众数可以得到,所提的建议应围绕利于商家获得较大利润提出。
六、随堂练习
1某公司销售部有营销人员15人,销售部为了制定某种商品的销售金额,统计了这15个人的销售量如下(单位:件)
1800、510、250、250、210、250、210、210、150、210、150、120、120、210、150 求这15个销售员该月销量的中位数和众数。
假设销售部负责人把每位营销员的月销售定额定为320件,你认为合理吗?如果不合理,请你制定一个合理的销售定额并说明理由。
八年级(下)数学教案
2、某商店3、4月份出售某一品牌各种规格的空调,销售台数如表所示:
规格
1匹
1.2匹
1.5匹
2匹
台数
月份3月
4月
12台
20台
8台
4台
16台
30台
14台
8台
根据表格回答问题:
商店出售的各种规格空调中,众数是多少?
假如你是经理,现要进货,6月份在有限的资金下进货单位将如何决定?
答案:1. (1)210件、210件
(2)不合理。因为15人中有13人的销售额达不到320件(320虽是原始数据的平均数,却不能反映营销人员的一般水平),销售额定为210件合适,因为它既是中位数又是众数,是大部分人能达到的额定。
2.
(1)1.2匹
(2)通过观察可知1.2匹的销售最大,所以要多进1.2匹,由于资金有限就要少进2匹空调。
七、课后练习
1.
数据8、9、9、8、10、8、99、8、10、7、9、9、8的中位数是
,众数是
2.
一组数据23、27、20、18、X、12,它的中位数是21,则X的值是
.
3.
数据92、96、98、100、X的众数是96,则其中位数和平均数分别是(
)
A.97、96
B.96、96.4
C.96、97
D.98、97 4.
如果在一组数据中,23、25、28、22出现的次数依次为2、5、3、4次,并且没有其他的数据,则这组数据的众数和中位数分别是(
)
A.24、25
B.23、24
C.25、25
D.23、25 5.
随机抽取我市一年(按365天计)中的30天平均气温状况如下表:
5 5 7 6 2 2 请你根据上述数据回答问题:
(1).该组数据的中位数是什么?
(2).若当气温在18℃~25℃为市民“满意温度”,则我市一年中达到市民“满意温度”的大约有多少天?
答案:1.
9;2.
22;
3.B;4.C;
5.(1)15.
(2)约97天
温度(℃)
-8 天数
3 -1 7 15 21 24 30
20.1.2 中位数和众数(第二课时)
一、教学目标:
1、进一步认识平均数、众数、中位数都是数据的代表。
2、通过本节课的学***均数、中位数、众数在描述数据时的差异。
3、能灵活应用这三个数据代表解决实际问题。
二、重点、难点和突破难点的方法
1、重点:了解平均数、中位数、众数之间的差异。
2、难点:灵活运用这三个数据代表解决问题。
较多的一种量。另外要注意:
平均数计算要用到所有的数据,它能够充分利用所有的数据信息,但它受极端值的影响较大. 众数是当一组数据中某一数据重复出现较多时,人们往往关心的一个量,众数不受极端值的影响,这是它的一个优势,中位数的计算很少也不受极端值的影响. 平均数的大小与一组数据中的每个数据均有关系,任何一个数据的变动都会相应引起平均数的变动. 中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中,当一组数据中的个别数据变动较大时,可用中位数描述其趋势. 三、例、习题的意图分析:
教材P119例6的意图
(1)、这是在学习过数据的收集、整理、描述与分析之后涉及到这四个环节的一个例题,从分析和解答过程来看它交待了该如何完整的进行这几个过程,为该怎样综合运用已学的统计知识解决实际问题作了一个标准范例。教师在授课过程中也应注意,对已学知识的巩固复习。
(2)、从分析和解答过程来看,此例题的一个主要意图是区分平均数、众数和中位数这三个数据代表的异同。
(3)、由例题中(2)问和(3)问的不同,导致结果的不同,其目的是告诉学生应该根据题目具体要求来灵活运用三个数据代表解决问题。
(4)、本例题也客观的反映了数学知识对生活实践的指导有重要的意义,也体现了统计知识与生活实践是紧密联系的。
四、课堂引入:
本节课的课堂引入可以通过复***均数、中位数和众数定义开始,为完成重点、突破难点作好铺垫,没有必要牵强的加入一个生活实例作为引入问题。
五、例习题的分析:
例题6中第一问是在巩固平均数定义、中位数定义和众数的定义。可以引导学生从问题中词语特点分析它们分别指哪个数据代表,教师也可以顺便加一个发散性问题,一般地哪些词语是指平均数、中位数和众数呢?
例题6中的第二问学生一般不易想到,教师要将“较高目标”衡量标准引向三个数据代表身上,这样学生就不难回答了。
第三问要抓住一半左右应与哪个数据代表的意义相符这个问题。即要很好的回答第三问,学生头脑必须很清楚平均数、中位数、众数的特点。
八年级(下)数学教案
六、随堂练习:
1、在一次环保知识竞赛中,某班50名学生成绩如下表所示:
得分
人数
50 2 60 3 70 6 80 14 90 15 100 5 110 4 120 1 分别求出这些学生成绩的众数、中位数和平均数. 2、公园里有甲、乙两群游客正在做团体游戏,两群游客的年龄如下:(单位:岁)
甲群:13、13、14、15、15、15、16、17、17。
乙群:3、4、4、5、5、6、6、54、57。
(1)、甲群游客的平均年龄是
岁,中位数是
岁,众数是
岁,其中能较好反映甲群游客年龄特征的是
。
(2)、乙群游客的平均年龄是
岁,中位数是
岁,众数是
岁。其中能较好反映乙群游客年龄特征的是
。
答案:1.
众数90
中位数
85
平均数
84.6 2.(1)15、15、15、众数(2).15、5.5、6、中位数
七、课后练习:
1、某公司的33名职工的月工资(以元为单位)如下:
职员
人数
工资
董事长
1 5500 副董事长
1 5000 董事
2 3500 总经理
1 3000 经理
5 2500 管理员
3 2000 职员
20 1500 (1)、求该公司职员月工资的平均数、中位数、众数?
(2)、假设副董事长的工资从5000元提升到20000元,董事长的工资从5500元提升到30000元,那么新的平均数、中位数、众数又是什么?(精确到元)
(3)、你认为应该使用平均数和中位数中哪一个来描述该公司职工的工资水平?
2、某公司有15名员工,它们所在的部门及相应每人所创的年利润如下表示:
部门
人数
每人所创的年利润
根据表中的信息填空:
(1)
该公司每人所创年利润的平均数是
万元。
(2)
该公司每人所创年利润的中位数是
万元。
(3)
你认为应该使用平均数和中位数中哪一个来描述该公司每人所创年利润的一般水平?答
答案:1.(1).2090 、500、1500 (2).3288、1500、1500 (3)中位数或众数均能反映该公司员工的工资水平,因为公司中少数人的工资额与大多数人的工资额差别较大,这样导致平均数与中位数偏差较大,所以平均数不能反映这个公司员工的工资水平。
2.(1)3.2万元
(2)2.1万元
(3)中位数
A 1 20 B 1 5 C 2 2.5 D 4 2.1 E 2 1.5 F 2 1.5 G 3 1.2
20.2
数据的波动程度
20.2.1方差
一. 教学目标:
1. 了解方差的定义和计算公式。
2. 理解方差概念的产生和形成的过程。
3. 会用方差计算公式来比较两组数据的波动大小。
二. 重点、难点和难点的突破方法:
1. 重点:方差产生的必要性和应用方差公式解决实际问题。
2. 难点:理解方差公式
三. 例习题的意图分析:
1. 教材P124的讨论问题的意图:
(1).创设问题情境,引起学生的学习兴趣和好奇心。
(2).为引入方差概念和方差计算公式作铺垫。
(3).介绍了一种比较直观的衡量数据波动大小的方法——画折线法。
(4).客观上反映了在解决某些实际问题时,求平均数或求极差等方法的局限性,使学生体会到学习方差的意义和目的。
2. 教材P125例1、例题2的设计意图:
(1).例1放在方差计算公式和利用方差衡量数据波动大小的规律之后,不言而喻其主要目的是及时复习,巩固对方差公式的掌握。
(2).例1的解题步骤也为学生做了一个示范,学生以后可以模仿例1的格式解决其他类似的实际问题。
四.课堂引入:
除采用教材中的引例外,可以选择一些更时代气息、更有现实意义的引例。例如,通过学生观看2004年奥运会刘翔勇夺110米栏冠军的录像,进而引导教练员根据平时比赛成绩选择参赛队员这样的实际问题上,这样引入自然而又真实,学生也更感兴趣一些。
五. 例题的分析:
教材P125例1在分析过程中应抓住以下几点:
1.
题目中“整齐”的含义是什么?说明在这个问题中要研究一组数据的什么?学生通过思考可以回答出整齐即波动小,所以要研究两组数据波动大小,这一环节是明确题意。
2.
在求方差之前先要求哪个统计量,为什么?学生也可以得出先求平均数,因为公式中需要平均值,这个问题可以使学生明确利用方差计算步骤。
3.
方差怎样去体现波动大小?
这一问题的提出主要复习巩固方差,反映数据波动大小的规律。
八年级(下)数学教案
六. 随堂练习:
1. 从甲、乙两种农作物中各抽取1株苗,分别测得它的苗高如下:(单位:cm)
甲:9、10、11、12、7、13、10、8、12、8;
乙:8、13、12、11、10、12、7、7、9、11;
问:(1)哪种农作物的苗长的比较高?
(2)哪种农作物的苗长得比较整齐?
2. 段巍和金志强两人参加体育项目训练,近期的5次测试成绩如下表所示,谁的成绩比较稳定?为什么?
测试次数
段巍
金志强
1 13 10 2 14 13 3 13 16 4 12 14 5 13 12 参考答案:1.(1)甲、乙两种农作物的苗平均高度相同;(2)甲整齐
2.段巍的成绩比金志强的成绩要稳定。
七. 课后练习:
1.已知一组数据为2、0、-1、3、-4,则这组数据的方差为
。
2.甲、乙两名学生在相同的条件下各射靶10次,命中的环数如下:
甲:7、8、6、8、6、5、9、10、7、4 乙:9、5、7、8、7、6、8、6、7、7 经过计算,两人射击环数的平均数相同,但S甲
S乙,所以确定
去参加比赛。
3. 甲、乙两台机床生产同种零件,10天出的次品分别是(
)
甲:0、1、0、2、2、0、3、1、2、4 乙:2、3、1、2、0、2、1、1、2、1 分别计算出两个样本的平均数和方差,根据你的计算判断哪台机床的性能较好?
4.
小爽和小兵在10次百米跑步练习中成绩如表所示:(单位:秒)
小爽
10.8 小兵
10.9 10.9 10.9 11.0 10.8 10.7 10.8 11.1 11.0 11.1 10.9 10.8 10.8 11.0 11.1 10.7 10.9 10.9 10.8 22如果根据这几次成绩选拔一人参加比赛,你会选谁呢?
答案:1. 6
2. >、乙;3. 4.
2x甲=1.5、S甲=0.975、x2乙=1. 5、S乙=0.425,乙机床性能好
2x小爽=10.9、S小爽=0.02;
=10.9、S小兵=0.008 2x小兵选择小兵参加比赛。
文档信息
- 格式: PDF
- 页数: 未知页
- 字数: 未知
- 上传时间: 2019-06-28 09:30:00
- 下载次数: None
- 浏览次数: 62
- 积分: 1
- 收藏: 0
作者信息
5ygggwenku_93358
来自:学校:城口县明通初级中学
相关文档
下载提示
下载文档后,您可以获得:
- 完整无水印文档
- 高清阅读体验
- 随时保存查看
- 支持打印下载