测试教学设计案例
测试教学设计案例
未知
摘要:暂无摘要
关键词:测试教学设计案例
正文
八年级数学下册《三角形的中位线》
刘彤
一、
设计思路
(一)指导思想:
二、
依据《数学课程标准》及新课程理念要求:“将数学建立在学生的认知发展水平和已有的知识经验上,教师应激发学生的学习积极性,向学生提供充分从事数学活动的机会,帮助学生在自主探究、合作交流的过程中真正理解和掌握基本的数学知识和技能,数学思想和方法,获得广泛的数学活动经验。”学生是数学学习的主人,教师是数学学习的组织者、引导者和合作者。
(二)教学目标
1.理解三角形中位线的概念,会证明三角形的中位线定理,能应用三角形中位线定理解决相关的问题;
2.进一步经历“探索—猜想—证明”的过程,发展探究能力、推理论证的能力;培养学生逆向思维及分解构造基本图形解决较复杂问题的能力,培养数学应用意识。
3在命题的证明过程中通过相互间的合作与交流,进一步发展学生合作交流的能力和数学表达能力;利用制作的Powerpoint课件,创设问题情景,激发学生的热情和兴趣,激活学生思维。
4.在定理的证明和应用过程中体会归纳、类比、转化等数学思想方法。
5.教学重难点
重点:三角形中位线性质定理的证明及应用。
难点:用添加辅助线的方法来推理证明三角形中位线定理和性质的灵活应用。
6.教学方法与学法指导
对于三角形中位线定理的引入采用发现法,在教师的引导下,学生通过操作、探索、猜测等自主探究的方法先获得结论再去证明。在此过程中,注重对证明思路的启发和数学思想方法的渗透,提倡证明方法的多样性,而对于定理的证明过程,则运用多媒体演示。
7.教学准备
【策略】
课堂组织策略:组织学生复习旧知识,联系实际,创设问题情景,逐层展开,探索新知,并精心设计各环节、练习题、达到巩固知识,解决问题的目的。
学生学习策略:明确学习目标,了解所需掌握的知识,在教师的组织、引导、点拨下,通过观察、归纳、抽象、概括等手段,获取知识。
辅助策略:借助“Powerpoint”平台,向学生展示动感几何,化抽象为形象,帮助学生解决学习过程中所遇难题,提高学习效率。
8.【主要创意思路】
1、用实例引入新课,培养学生应用数学的意识;
2、鼓励学生大胆猜想,用观察、测量等方法来突破重点、化解难点;
3、以学生为主体,应用启发式教学,调动学生的积极性;
4、利用开放型练习代替传统练习,启迪学生的思维、开阔学生视野;
5、通过多媒体教学,揭示几何知识间的内在联系及概念的本质属性。
9.【教具和学具的准备】
教具:多媒体、投影仪、三角形纸片、剪刀、常用画图工具。
学具:三角形硬纸片、剪刀、刻度尺、量角器。
三、
教学过程
第一环节:创设情景,激发兴趣
A、B两地被池塘隔开不能直接到达(如图),工程人员要测量A、B两地的距离,先选定能直接到达A、B两地的点C,
又分别取AC、BC的中点M、N,量出MN的长,由此就知道了A、B两地的距离.你知道其中的道理吗?
引入课题:学完了本节课《三角形的中位线》你就能解决这个问题了。
【设计意图】:此处设计一个问题情境,通过对所提问题的思考与解决,自然而然地引出了三角形的中位线的概念,并在所讨论的图形中隐含着三角形的中位线与底边的关系。
第二环节:借机引导,明确概念
1、上图中的线段MN是三角形中很重要的一条线段——中位线
教师引导学生总结三角形的中位线的定义:
连接三角形两边中点的线段叫做三角形的中位线
2、三角形的中位线与中线的区别
第三环节:问题引领,启动思维
(一)问题:
1、你能将任意一个三角形分成四个全等的三角形吗?
学生用事先准备好的三角形来分,将分得的三角形叠放在一起,看看能否全等,学生通过操作进一步的理解三角形的中位线,教师巡视指导。最后请一学生上台演示,统一观点。
2、你能通过剪拼的方式,将一个三角形拼成一个与其面积相等的平行四边形吗?
学生先小组内讨论,试着完成操作。
师生再共同总结操作过程:
(1)拿出事先准备的三角形,记为△ABC (2)分别取AB,AC中点D,E,连接DE (3)沿三角形的中位线DE将△ABC剪成两部分,并将△ADE绕点E旋转180°到△CFE的位置,这样就得到与△ABC面积相等的四边形BCFD.。
(二)思考:所得四边形BCFD是平行四边形吗?
教师引导学生思考平行四边形的判别方法。
(1、定义法:两组对边分别平行的四边形是平行四边形。
2、两组对边分别相等的四边形是平行四边形。
3、一组对边平行且相等的四边形是平行四边形。
4、对角线互相平分的四边形是平行四边形。)
文档信息
- 格式: PDF
- 页数: 未知页
- 字数: 未知
- 上传时间: 2019-04-12 15:18:00
- 下载次数: None
- 浏览次数: 92
- 积分: 1
- 收藏: 0
作者信息
5ygggwenku_93264
来自:学校:唐山市第四十九中学
相关文档
下载提示
下载文档后,您可以获得:
- 完整无水印文档
- 高清阅读体验
- 随时保存查看
- 支持打印下载