二次根式应用公开课教案(教学设计)
二次根式应用公开课教案(教学设计)
未知
摘要:暂无摘要
关键词:二次根式应用公开课教案(教学设计)
正文
《18.2.1矩形(2)——矩形的判定方法》教学设计
一、教学目标
⑴知识与技能:经历并了解矩形判定方法的探索过程,使学生逐步掌握说理的基本方法,掌握矩形的判定方法,能根据判定方法进行初步运用。
⑵过程与方法:在探索判定方法的过程中,发展学生的合理推理意识,主动探究的习惯,在画矩形的过程中,培养学生动手实践能力,积累数学活动经验。
⑶情感与态度:激发学生学习数学的热情,培养学生勇于探索的精神和独立思考合作交流的良好习惯,体验数学活动来源于生活又服务于生活,提高学生的学习兴趣。通过与他人的合作,培养学生的合作意识和团队精神。
二、教学重难点
教学重点:探索矩形的判定方法、突破方法;为了突出重点,以学生自主探索、合作交流为主,提出问题,让学生动眼观察,动脑猜想,动手验证,进而掌握矩形的判定方法方法。
教学难点:判定方法的理解和初步运用,突破方法采用教师引导和学生合作的教学方法,及化归的数学思想。
三、教学过程
1.课堂活动引入
问题:有哪些是能够判定平行四边形的方法?
游戏环节(分组竞争)
2. 知识回顾
回顾矩形的定义,结合几何画板图形展示,简单说明矩形的第一种判定方法:有一个角是直角的平行四边形是矩形,并归纳书写格式。
3. 思考探究一
由简单实例,工人师傅在做门窗或矩形零件时,通常会分两步:
⑴测量两组对边的长度是否相等;
⑵测量两条对角线的长度是否相等。
得出对角线相等的平行四边形是矩形。
论证:已知四边形ABCD是平行四边形,AC/BD相交于点O.AC=BD.求证:四边形ABCD是矩形. 矩形的判定方法2:对角线相等的平行四边形是矩形,并归纳书写形式。
4. 能力提升
如图,在 ABCD中,对角线AC,BD相交于点O,且OA=OD,∠OAD=50°,求∠OAB的度数。
5.思考探究二
前面我们研究矩形的四个角,知道它们都是直角. 这句话的逆命题成立吗?即四个角都是直角的四边形是矩形吗?
四个角都是直角 对角相等 平行四边形 + 一个角是直角 矩形
至少有几个角是直角的四边形是矩形?
三个角都是直角的四边形 四个角都是直角 矩形
矩形的判定方法3:有三个角是直角的四边形是矩形,并归纳书写形式。
6. 课堂活动,分组竞争
问题:能判定四边形为矩形的方法
7.联系生活
8.数学小测
9.课堂小结
10.课后作业
文档信息
- 格式: PDF
- 页数: 未知页
- 字数: 未知
- 上传时间: 2019-06-02 18:17:00
- 下载次数: None
- 浏览次数: 137
- 积分: 1
- 收藏: 0
作者信息
5ygggwenku_93258
来自:学校:合江县南滩乡初级中学校
相关文档
下载提示
下载文档后,您可以获得:
- 完整无水印文档
- 高清阅读体验
- 随时保存查看
- 支持打印下载