梯形面积教学设计

未知
2018-04-30 21:22:00
791
None
PDF / 未知页
未知字
积分:3
1 页,共 1

梯形面积教学设计

未知

摘要:暂无摘要

关键词:梯形面积教学设计

正文

一教学目标

1. 知识与技能:运用转化的数学思想,用多种方法探索并掌握梯形面积公式,能解决相关的问题,综合了解平面图形的内在联系。

2. 过程与方法:在观察、推理、归纳的能力中提高学生的动手能力和知识迁移能力,体会转化思想的价值。

3. 情感态度价值:进一步积累解决问题的经验,增强新图形面积研究的策略意识,获得成功体验,提高学习自信心。

二准备材料

每人准备两个完全一样的梯形,并标出它们的上底,下底和高分别是多少。

三重点难点

教学重点:

探索并掌握梯形面积是本节课的重点

教学难点:

理解梯形面积计算公式的推导过程是本课的难点。

四教学过程

第一学时

教学活动

活动1【讲授】梯形的面积教学设计

(一)、复习旧知

出示平行四边形和三角形,说出平行四边形的底和高分别是多少,说出平行四边形的面积公式

平行四边形的面积=底*高/2

说出三角形的底和高分别是多少,说出三角形的面积公式

三角形的面积=底*高/2

(二)、探究新知

联系已学图形面积计算公式,猜一猜梯形的面积计算公式可能是怎样的。

基于平行四边形面积和三角形面积都与底和高有关,学生可以大胆猜测,然后探究验证。

具体做法:

⑴拿出准备的梯形。

⑵提出要求:

一做:利用手中的学具,或拼、或剪…转化成一个以前我们所学的图形。(平行四边形)想一想:可以转化成什么图形?所转化成的图形与原来梯形有什么联系?

平行四边形的底=梯形的上底+下底

平行四边形的高=梯形的高

平行四边形的面积=梯形面积的2倍

说一说:你发现了什么,并尝试推导梯形的面积计算公式。

平行四边形的面积=底×高=(上底+下底)×高

梯形的面积=(上底+下底)×高÷2

⑶小组合作,操作、观察、交流、填表,教师参与讨论。

【设计意图:此环节为学生创设了一个广阔的天空,顺其天性,自然调动已有的数学策略,突破

教材以导为主的限制,以学生活动为主。凡是学生能想到、做到、说到的教师不限制、不替代、不暗示,为学生提供了一个充分发挥才智自己想办法解决问题的思维空间,在这里学生可以按照自己的想法任意剪拼一个梯形,摆拼两个梯形,使学生通过尝试——失败——成功的亲身体验,主动发现公式,注重了学生推理能力的培养,从而有效地突出本节的重点,突破本节的难点。】

⑷全班交流汇报。(教师根据学生的回答借助课件演示)

a、学生可能从以上梯形中选择两个完全相同的梯形,拼成一个平行四边形或者一个长方形。他们可能得出以下结论:两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底等于梯形上底和下底的和,高等于梯形的高。每个梯形的面积等于拼成的平行四边形面积的一半。学生还可能会有以下做法。

b、沿梯形的对角线剪开分成两个三角形

c、把一个梯形剪成一个平行四边形和一个三角形

d、沿等腰梯形的一个顶点做高,剪拼成一个长方形

e、沿梯形中位线的两端点分别向下做高,剪拼成一个长方形

f、从梯形的两腰中点的连线将梯形剪开拼成一个平行四边形。

……

对学生以上的做法教师给予充分的肯定和表扬。只要学生能把以上意思基本说出来,再通过小组之间的交流、互补,使结论更加完善。

(其中第一种方法重点解决,其他方法学生汇报几种算几种不做一一详解。)

⑸归纳公式。根据探究表的结论,让学生自己归纳出梯形面积的计算公式。

梯形的面积=(上底+下底)×高÷2

如果用字母S表示面积,用a和b表示梯形的上底和下底,用h表示高,那么上面的公式用字母表示:

S=(a+b)h÷2

【设计意图:对多种方法各抒己见,在交流的过程中互补知识缺陷,学生在猜想—操作—争辩—演示—叛变—互补的过程中深刻的理解梯形面积的推导,纠正学生的错误猜想,巩固正确的推导思路。】

(五)深化巩固

1、尝试计算

a、计算一个一般梯形的面积。

b、梯形面积计算帮我们完成很多伟大的壮举,介绍三峡水电站和南水北调工程。出示例题:

(1)我国三峡水电站大坝的横截面的一部分是梯形(如下图),求它的面积。

(2)一条新挖的水渠,横截面是梯形(如图)。渠口宽2.8米,渠底宽1.4米,渠深1.2米。它的横截面积是多少平方米?

借助模型和课件让学生了解横截面、渠底、渠高等词义。在两道题中任选一道解答。

【设计意图:运用公式是课堂教学中不可缺少的一个过程,这一环节通过练习既能巩固公式,又有利于学生灵活运用所学知识解决生活中的数学问题,使学生体会到数学来源于生活,又应用于生活的思想。

2、学生观察图形,解决以下问题:梯形的上底缩小到一点时,梯形转化成什么图形?这是面积公式怎么变化?当梯形的上底增大到与下底相等时,梯形转化成什么图形?这时面积公式怎么变化?当梯形的上底增大到与下底相等,并且两腰与下底垂直时,梯形就变成什么图形?面积公式怎么变化?从这几个公式的联系,可发现什么规律?

【设计意图:本环节是为了将学生的学习积极性再次推向高潮,通过运用梯形面积公式计算其他图形,让学生体会知识结构的内在联系,从中培养了学生构建知识系统的能力和知识迁移及

综合整理的能力。】

3、总结心得:

这节课最大的特点是给学生自己动手操作,自己探究,从而得到新知识,这个环节主要是再次把学习的主动权交给学生。让学生在动手操作和探究过程更清晰地认识到这节课到底学了什么,通过谈感想,谈收获,学生间互相补充,共同完善,有利于学生学习能力的培养,同时体验学习的乐趣和成功的快乐。】

1 页,共 1

文档信息

  • 格式: PDF
  • 页数: 未知页
  • 字数: 未知
  • 上传时间: 2018-04-30 21:22:00
  • 下载次数: None
  • 浏览次数: 791
  • 积分: 3
  • 收藏: 0

作者信息

教师头像

5ygggwenku_5023

来自:学校:镇雄县罗坎镇新田小学

下载提示

下载文档后,您可以获得:

  • 完整无水印文档
  • 高清阅读体验
  • 随时保存查看
  • 支持打印下载