数轴表示根号13说课稿【一等奖】
数轴表示根号13说课稿【一等奖】
未知
摘要:暂无摘要
关键词:数轴表示根号13说课稿【一等奖】
正文
人教版八年级上册数学第十七章《勾股定理》教学设计
17.1勾股定理(1)
学习目标
知识:了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾股定理。
能力:培养在实际生活中发现问题总结规律的意识和能力。
情感:介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。
学习重点:
1. 勾股定理的内容及证明。
学习难点:
1. 勾股定理的证明。
教学流程
【导课】
目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。
让学生画一个直角边为3cm和4cm的直角△ABC,用刻度尺量出AB的长。
以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的直角边(股)的长是4,那么斜边(弦)的长是5。
再画一个两直角边为5和12的直角△ABC,用刻度尺量AB的长。
你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。对于任意的直角三角形也有这个性质吗?
中~@国教育出#*版网【阅读质疑
自主探究】
例1已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。求证:a2+b2=c2。
分析:⑴让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。
⑵拼成如图所示,其等量关系为:4S+S=S
△小正大正4×ab+(b-a)2=c2,化简可证。
⑶发挥学生的想象能力拼出不同的图形,进行证明。
⑷
勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。
例2已知:在△ABC中,∠C=90°,∠A、∠B、∠C的对边为a、b、c。
求证:a2+b2=c2。
分析:左右两边的正方形边长相等,则两个正方形的面积相等。
左边S=4×ab+c2
右边S=(a+b)2
左边和右边面积相等,即
4×ab+c2=(a+b)2
化简可证。
【多元互动
合作探究】
1.勾股定理的具体内容是:
。
2.如图,直角△ABC的主要性质是:∠C=90°,(用几何语言表示)
⑴两锐角之间的关系:
;
⑵若D为斜边中点,则斜边中线
;
⑶若∠B=30°,则∠B的对边和斜边:
;
⑷三边之间的关系:
。
3.△ABC的三边a、b、c,若满足b2= a2+c2,则
=90°;
若满足b2>c2+a2,则∠B是
角;
若满足b2<c2+a2,则∠B是
角。
4.根据如图所示,利用面积法证明勾股定理
【训练检测
目标探究】
1.已知在Rt△ABC中,∠B=90°,a、b、c是△ABC的三边,则
⑴c= 。(已知a、b,求c)
⑵a= 。(已知b、c,求a)
⑶b= 。(已知a、c,求b)
2.如下表,表中所给的每行的三个数a、b、c,有a<b<c,试根据表中已有数的规律,写出当a=19时,b,c的值,并把b、c用含a的代数式表示出来。
3、4、5
5、12、13
7、24、25
9、40、41
……
19,b、c
32+42=52
52+122=132
72+242=252
92+402=412
……
192+b2=c2
3.在△ABC中,∠BAC=120°,AB=AC=cm,一动点P从B向C以每秒2cm的速度移动,问当P点移动多少秒时,PA与腰垂直。
4.已知:如图,在△ABC中,AB=AC,D在CB的延长线上。
求证:⑴AD2-AB2=BD·CD
⑵若D在CB上,结论如何,试证明你的结论。
【迁移应用
拓展探究】
布置作业
--板书设计--教后反思
文档信息
- 格式: PDF
- 页数: 未知页
- 字数: 未知
- 上传时间: 2019-06-19 09:56:00
- 下载次数: None
- 浏览次数: 80
- 积分: 1
- 收藏: 0
作者信息
5ygggwenku_93272
来自:学校:鞍山市第十二中学
相关文档
下载提示
下载文档后,您可以获得:
- 完整无水印文档
- 高清阅读体验
- 随时保存查看
- 支持打印下载