节约用水优质课教案推荐

未知
2024-12-26 03:06:17
158
None
PDF / 未知页
未知字
积分:6
1 页,共 1

节约用水优质课教案推荐

未知

摘要:暂无摘要

关键词:节约用水优质课教案推荐

正文

鸽巢问题供应小学黄润秋

教学目标:

1、知识与技能:通过操作、观察、比较、推理等活动,初步了解鸽巢原理,学会简单的鸽巢原理分析方法,运用鸽巢原理的知识解决简单的实际问题。

2、过程与方法:在鸽巢原理的探究过程中,使学生逐步理解和掌握鸽巢原理,经历将具体问题数学化的过程,培养学生的模型思想。

3、情感态度:通过对鸽巢原理的灵活运用,感受数学的魅力,体会数学的价值,提高学生解决问题的能力和兴趣。

教学重点:理解鸽巢原理,掌握先“平均分”,再调整的方法。

教学难点:理解“总有”“至少”的意义,理解“至少数=商数+1”。

教学准备:多媒体课件、合作探究作业纸

教学过程

一、创设情境,导入新知

师:今天老师要给大家表演一个魔术,需要5名同学帮忙,谁想来,这副牌我取出大小王还剩52张,你们5人每人随意抽一张,我知道至少有2张牌是同花色的,相信吗?

二、合作交流,探究新知

(一)教学例1(课件出示例题1情境图)

思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”和“至少”是什么意思?

学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。

(1)操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。(2)理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。

(3)探究证明。

1、小组合作:

(1)画一画:借助“画图”或“数的分解”的方法把各种情况都表示出来;

(2)找一找:每种摆法中最多的一个笔筒放了几支,用笔标出;

(3)我们发现:总有一个笔筒至少放进了()支铅笔。

2、学生汇报,展台展示。

交流后明确:

(1)四种情况:(4,0,0)、(3,1,0)、(2,1, 1)、(2,2,0)

(2)每种摆法中最多的一个笔筒放进了:4支、3支、2支。

(3)总有一个笔筒至少放进了2支铅笔。

3、小结:刚才我们通过“画图”、“数的分解”两种方法列举出所有情况验证了结论,这种方法叫“枚举法”,我们能不能找到一种更为直接的方法,只摆一种情况,也能得到这个结论,找到“至少数”呢?

4、用“假设法”证明。

语言描述:把4支铅笔平均放在3个笔筒里,每个笔筒放1支,余下的1支,无论放在哪个笔筒,那个笔筒就有2支笔,所以说总有一个笔筒至少放进了2支笔。(指名说,互相说)

引导发现:

(1)这种分法的实质就是先怎么分的?(平均分)

(2)为什么要一开始就平均分?(均匀地分,使每个笔筒的笔尽可能少一点,方便找到“至少数”),余下的1支,怎么放?(放进哪个笔筒都行)

(3)怎样用算式表示这种方法?(4÷3=1支……1支 1+1=2支)算式中的两个“1”是什么意思?

5、引伸拓展:

(1)5支笔放进4个笔筒,总有一个笔筒至少放进()支笔。

(2)26支笔放进25个笔筒,总有一个笔筒至少放进()支笔。

(3)100支笔放进99个笔筒,总有一个笔筒至少放进()支笔。

学生列出算式,依据算式说理。

6、发现规律:刚才的这种方法就是“假设法”,它里面就蕴含了“平均分”,我们用有余数的除法算式把平均分的过程简明的表示出来了,现在会用简便方法求“至少数”吗? (二)建立模型

1、出示题目:5支笔放进3支笔筒,5÷3=1支……2支学生可能有两种意见:总有一个笔筒里至少有2支,至少3支。

针对两种结果,各自说说自己的想法。

2、小组讨论,突破难点:至少2只还是3只?

3、学生说理,边摆边说:先平均分每个笔筒放进1支笔,余下2只再平均分放进2个不同的笔筒里,所以至少2只。(指名说,互相说)

4、质疑:为什么第二次平均分?(保证“至少”)

5、强化:如果把笔和笔筒的数量进一步增加呢?

(1)10支笔放进7个笔筒,至少几支放进同一个笔筒?

10÷7=1(支)…3(支) 1+1=2(支)

(2)14支笔放进4个笔筒,至少几支放进同一个笔筒?

14÷4=3(支)…2(支) 3+1=4(支)

(3)23支笔放进4个笔筒,至少几支放进同一个笔筒?

23÷4=5(支)…3(支) 5+1=6(支)

6、对比算式,发现规律:先平均分,再用所得的“商+1”

7、强调:和余数有没有关系?

学生交流,明确:与余数无关,不管余多少,都要再平均分,所以就是加1.

8、引申拓展:刚才我们研究了笔放入笔筒的问题,那如果换成鸽子飞进鸽笼你会解答吗?把苹果放入抽屉,把书放入书架,高速路口同时有4辆车通过3个收费口……,类似的问题我们都可以用这种方法解答。

(三)、鸽巢原理的由来

同学们从数学的角度分析了这些事情,同时根据数据特征,发现了这些规律。你们发现的这个规律和一位数学家发现的规律一模一样,只不过他是在150多年前发现的,你们知道他是谁吗?——德国数学家?“狄里克雷”,后人们为了纪念他从这么平凡的事情中发现的规律,就把这个规律

用他的名字命名,叫“狄里克雷原理”,由于人们对鸽子飞回鸽巢这个引起思考的故事记忆犹新,所以人们又把这个原理叫做“鸽巢原理”,它还有另外一个名字叫“抽屉原理”。三、巩固新知,拓展应用

1、现在我们回过头来想一想课开始时的魔术,谁来说说是什么道理?

2、5个人坐4把椅子,总有一把椅子上至少坐2人。为什么?

3、11只鸽子飞进了4个鸽笼,总有一个鸽笼至少飞进了3只鸽子。为什么?

4、随意找13位老师,他们中至少有2个人的属相相同。为什么?

四、课堂总结

通过今天的学习你有什么收获?

1 页,共 1

文档信息

  • 格式: PDF
  • 页数: 未知页
  • 字数: 未知
  • 上传时间: 2024-12-26 03:06:17
  • 下载次数: None
  • 浏览次数: 158
  • 积分: 6
  • 收藏: 0

作者信息

教师头像

5ygggwenku_5171

来自:学校:吉林油田供应小学

下载提示

下载文档后,您可以获得:

  • 完整无水印文档
  • 高清阅读体验
  • 随时保存查看
  • 支持打印下载