原(逆)命题、原(逆)定理教学设计案例
原(逆)命题、原(逆)定理教学设计案例
未知
摘要:暂无摘要
关键词:原(逆)命题、原…教学设计案例
正文
勾股定理的逆定理
一、教学目标
1.体会勾股定理的逆定理得出过程,掌握勾股定理的逆定理。
2.探究勾股定理的逆定理的证明方法。
3.理解原命题、逆命题、逆定理的概念及关系。
二、重点、难点
1.重点:掌握勾股定理的逆定理及证明。
2.难点:勾股定理的逆定理的证明。
三、例题的意图分析
例1(补充)使学生了解命题,逆命题,逆定理的概念,及它们之间的关系。
例2(P82探究)通过让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知欲,锻炼学生的动手操作能力,再通过探究理论证明方法,使实践上升到理论,提高学生的理性思维。
例3(补充)使学生明确运用勾股定理的逆定理判定一个三角形是否是直角三角形的一22222般步骤:①先判断那条边最大。②分别用代数方法计算出a+b和c的值。③判断a+b和2c是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。
四、课堂引入
创设情境:⑴怎样判定一个三角形是等腰三角形?
⑵怎样判定一个三角形是直角三角形?和等腰三角形的判定进行对比,从勾股定理的逆命题进行猜想。
五、例习题分析
例1(补充)说出下列命题的逆命题,这些命题的逆命题成立吗?
⑴同旁内角互补,两条直线平行。
⑵如果两个实数的平方相等,那么两个实数平方相等。
⑶线段垂直平分线上的点到线段两端点的距离相等。
⑷直角三角形中30°角所对的直角边等于斜边的一半。
分析:⑴每个命题都有逆命题,说逆命题时注意将题设和结论调换即可,但要分清题设和结论,并注意语言的运用。
⑵理顺他们之间的关系,原命题有真有假,逆命题也有真有假,可能都真,也可能一真一假,还可能都假。
解略。
222例2(P82探究)证明:如果三角形的三边长a,b,c满足a+b=c,那么这个三角形是直角三角形。
AA1分析:⑴注意命题证明的格式,首先要根据题意画出图形,然后写已知求证。
c⑵如何判断一个三角形是直角三角形,现在只知道bb若有一个角是直角的三角形是直角三角形,从而将问题aa转化为如何判断一个角是直角。
BCC1B1⑶利用已知条件作一个直角三角形,再证明和原三角形全等,使问题得以解决。
⑷先做直角,再截取两直角边相等,利用勾股定理计算斜边A1B1=c,则通过三边对应相等的两个三角形全等可证。
⑸先让学生动手操作,画好图形后剪下放到一起观察能否重合,激发学生的兴趣和求知
欲,再探究理论证明方法。充分利用这道题锻炼学生的动手操作能力,由实践到理论学生更容易接受。
证明略。
2例3(补充)已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,a=n-1,b=2n,2c=n+1(n>1)
求证:∠C=90°。
分析:⑴运用勾股定理的逆定理判定一个三角形是否是直角三角形的一般步骤:①先判222222断那条边最大。②分别用代数方法计算出a+b和c的值。③判断a+b和c是否相等,若相等,则是直角三角形;若不相等,则不是直角三角形。
⑵要证∠C=90°,只要证△ABC是直角三角形,并且c边最大。根据勾股定理的逆定理222只要证明a+b=c即可。
222224222242222⑶由于a+b= (n-1)+(2n)=n+2n+1,c=(n+1)= n+2n+1,从而a+b=c,故命题获证。
六、课堂练习
1.判断题。
⑴在一个三角形中,如果一边上的中线等于这条边的一半,那么这条边所对的角是直角。
⑵命题:“在一个三角形中,有一个角是30°,那么它所对的边是另一边的一半。”的逆命题是真命题。
⑶勾股定理的逆定理是:如果两条直角边的平方和等于斜边的平方,那么这个三角形是直角三角形。
⑷△ABC的三边之比是1:1:2,则△ABC是直角三角形。
2.△ABC中∠A、∠B、∠C的对边分别是a、b、c,下列命题中的假命题是( )
A.如果∠C-∠B=∠A,则△ABC是直角三角形。
222B.如果c= b—a,则△ABC是直角三角形,且∠C=90°。
2C.如果(c+a)(c-a)=b,则△ABC是直角三角形。
D.如果∠A:∠B:∠C=5:2:3,则△ABC是直角三角形。
3.下列四条线段不能组成直角三角形的是( )
A.a=8,b=15,c=17 B.a=9,b=12,c=15 C.a=5,b=3,c=2
D.a:b:c=2:3:4 4.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角? ⑴a=3,b=22,c=5; ⑵a=5,b=7,c=9;
⑶a=2,b=3,c=7; ⑷a=5,b=26,c=1。
七、课后练习,
1.叙述下列命题的逆命题,并判断逆命题是否正确。
32⑴如果a>0,那么a>0;
⑵如果三角形有一个角小于90°,那么这个三角形是锐角三角形;
⑶如果两个三角形全等,那么它们的对应角相等;
⑷关于某条直线对称的两条线段一定相等。
2.填空题。
⑴任何一个命题都有 ,但任何一个定理未必都有 。
⑵“两直线平行,内错角相等。”的逆定理是 。
222⑶在△ABC中,若a=b-c,则△ABC是 三角形, 是直角;
222若a<b-c,则∠B是 。
2222⑷若在△ABC中,a=m-n,b=2mn,c= m+n,则△ABC是 三角形。
3.若三角形的三边是 ⑴1、3、2; ⑵,,22111222; ⑶3,4,5 ⑷9,40,41; 345⑸(m+n)-1,2(m+n),(m+n)+1;则构成的是直角三角形的有( )
A.2个 B.3个
C.4个
D.5个
4.已知:在△ABC中,∠A、∠B、∠C的对边分别是a、b、c,分别为下列长度,判断该三角形是否是直角三角形?并指出那一个角是直角?
⑴a=9,b=41,c=40; ⑵a=15,b=16,c=6;
⑶a=2,b=23,c=4; ⑷a=5k,b=12k,c=13k(k>0)。
课后反思通过探究理论证明方法,使实践上升到理论,提高学生的理性思维。
:通过探究理论证明方法,使实践上升到理论,提高学生的理性思维。
文档信息
- 格式: PDF
- 页数: 未知页
- 字数: 未知
- 上传时间: 2019-05-06 14:28:00
- 下载次数: None
- 浏览次数: 68
- 积分: 1
- 收藏: 0
作者信息
5ygggwenku_93275
来自:学校:无极县北苏镇初级中学
相关文档
下载提示
下载文档后,您可以获得:
- 完整无水印文档
- 高清阅读体验
- 随时保存查看
- 支持打印下载