构建知识体系优质课一等奖
构建知识体系优质课一等奖
未知
摘要:暂无摘要
关键词:构建知识体系优质课一等奖
正文
《二次根式》复习课教案设计
一、内容和内容解析
1.内容
二次根式的概念. 2.内容解析
本节课是在学生学***方根、算术平方根、立方根的概念,会用根号表示数的平方根、立方根,知道开方与乘方互为逆运算的基础上,来学习二次根式的概念. 它不仅是对前面所学知识的综合应用,也为后面学习二次根式的性质和四则运算打基础.
教材先设置了三个实际问题,这些问题的结果都可以表示成二次根式的形式,它们都表示一些正数的算术平方根,由此引出二次根式的定义. 再通过例1讨论了二次根式中被开方数字母的取值范围的问题,加深学生对二次根式的定义的理解.
本节课的教学重点是:了解二次根式的概念;
二、目标和目标解析
1.教学目标
(1)体会研究二次根式是实际的需要.
(2)了解二次根式的概念.
2. 教学目标解析
(1)学生能用二次根式表示实际问题中的数量和数量关系,体会研究二次根式的必要性.
(2)学生能根据算术平方根的意义了解二次根式的概念,知道被开方数必须是非负数的理由,知道二次根式本身是一个非负数,会求二次根式中被开方数字母的取值范围.
三、教学问题诊断分析
对于二次根式的定义,应侧重让学生理解
“
的双重非负性,”即被开方数
≥0是非负数,
的算术平方根
≥0也是非负数.教学时注意引导学生回忆在实数一章所学***方根的意义和特征,帮助学生理解这一要求,从而让学生得出二次根式成立的条件,并运用被开方数是非负数这一条件进行二次根式有意义的判断.
本节课的教学难点为:理解二次根式的双重非负性.
四、教学过程设计
1.创设情境,提出问题
问题1你能用带有根号的的式子填空吗?
(1)面积为3 的正方形的边长为_______,面积为S 的正方形的边长为_______. (2)一个长方形围栏,长是宽的2 倍,面积为130m?,则它的宽为______m.
(3)一个物体从高处自由落下,落到地面所用的时间
t(单位:s)与开始落下的高度h(单位:m)满足关系
h =5t?,如果用含有h 的式子表示
t ,则t= _____.
师生活动:学生独立完成上述问题,用算术平方根表示结果,教师进行适当引导和评价.
【设计意图】让学生在填空过程中初步感知二次根式与实际生活的紧密联系,体会研究二次根式的必要性.
问题2 上面得到的式子
,
,
分别表示什么意义?它们有什么共同特征?
师生活动:教师引导学生说出各式的意义,概括它们的共同特征:都表示一个非负数(包括字母或式子表示的非负数)的算术平方根.
【设计意图】为概括二次根式的概念作铺垫.
2.抽象概括,形成概念
问题3 你能用一个式子表示一个非负数的算术平方根吗?
师生活动:学生小组讨论,全班交流.教师由此给出二次根式的定义:一般地,我们把形如
(a≥0)的式子叫做二次根式,“
”称为二次根号.
【设计意图】让学生体会由特殊到一般的过程,培养学生的概括能力.
追问:在二次根式的概念中,为什么要强调“a≥0”?
师生活动:教师引导学生讨论,知道二次根式被开方数必须是非负数的理由.
【设计意图】进一步加深学生对二次根式被开方数必须是非负数的理解.
3.辨析概念,应用巩固
例1 当
时怎样的实数时,
在实数范围内有意义?
师生活动:引导学生从概念出发进行思考,巩固学生对二次根式的被开方数为非负数的理解.
例2 当
是怎样的实数时,
在实数范围内有意义?
呢?
师生活动:先让学生独立思考,再追问.
【设计意图】在辨析中,加深学生对二次根式被开方数为非负数的理解.
问题4 你能比较
与0的大小吗?
师生活动:通过分 和
这两种情况的讨论,比较
与0的大小,引导学生得出
≥0的结论,强化学生对二次根式本身为非负数的理解,
【设计意图】通过这一活动的设计,提高学生对所学知识的迁移能力和应用意识;培养学生分类讨论和归纳概括的能力. 4.综合运用,巩固提高
练习1 完成教科书第3页的练习.
练习2 当x 是什么实数时,下列各式有意义.
(1)
;(2)
;(3)
;(4) .
【设计意图】
辨析二次根式的概念,确定二次根式有意义的条件. 6.布置作业:教科书习题16.1第1,3,5,
7,10题.
文档信息
- 格式: PDF
- 页数: 未知页
- 字数: 未知
- 上传时间: 2019-05-20 09:00:00
- 下载次数: None
- 浏览次数: 146
- 积分: 1
- 收藏: 0
作者信息
5ygggwenku_93261
来自:学校:新乡县小冀镇中街中学
相关文档
下载提示
下载文档后,您可以获得:
- 完整无水印文档
- 高清阅读体验
- 随时保存查看
- 支持打印下载