三角形三边之间的关系教案范文
三角形三边之间的关系教案范文
未知
摘要:暂无摘要
关键词:三角形三边之间的关系教案范文
正文
教学目标: 三角形边的关系教学设计光复小学田丽
1、理解三角形边的关系“三角形任意两边的和大于第三边”。并根自己的动手量一量进行验证这一说法。
2、利用想象和观察的方法,理解只有在三个边中,只有较小的两边的和大第三边,才能围成三角形,否则是围不上的。
3、能根据三角形的三边关系解释生活中的现象,提高运用数学知识解决实际问题的能力。
教学重点:
对三角形任意两边的和大于第三边的理解
探究三角形任意两边的和大于第三边
教学难点:
理解并会利用三角形较短的两边的和与第三边比较判断能否围成三角形
教学准备:课件、不同长度的小棒、实验表格。
教学过程:
一、理解“三角形任意三边的和大于第三边”
师:在2000多年前,古希腊有一位伟大的数学家叫欧基里得,他写字一本非常有名的书叫《几何本原》,在这本书里有这么一句话,请同学们读一下“三角形任意三边的和大于第三边”。(板书)
师:什么意思?你懂吗?
学生说自己的理解。
师:这黑板上有一个三角形,如果用a .b.c分别表示三条边的长度,你能用式子表示出你的理解吗?请同学生拿出刚发的A4纸,写一写
教师把有一个式子,两个式子,三个式子都用投影仪展示出来,请同学观察。
师:请同学们看看这些有什么不同?你欣赏哪一个?理由是什么?
学生说一下自己的感想。
师:三个式子写得更全,就是把所有情况写下来了。请大家看看是这样的吗? A+B>C B+C>A C+A>B还有吗?原来三角任意两边的和是这个意思,那就黑板上的三角形而言,我们能写几个式子?
学生边说,老师边板出
师:看样子大家还真是弄懂这句话的意思,现在这们再来读一读。
二、深研究“三角形任意三边的和大于第三边”
师:意思弄清楚了,对于这句话你信吗?看到大家的神情,很明显有人信,有人不信,还有人半信半疑。相信的这个说法的举手,不相信这个说法的举手,半信半疑的举手,大家的意思意见不统一呀,看样子我们研究一下。
师:请同学们拿出“角形任意三边的和大于第三边验证单”同桌两人利用量一量,比一比的方法进行一下验证,看一看是不是角形任意三边的和大于第三边,之后第三个格子,大家可以自已画一个三角形进行验证。
学生填写验证单。
哪个同桌愿意来把第一个三角形的验证过程及结论和大家汇报一下?(一个汇报过程,一个说结论)分工明确,合作得特别有效率。
学生汇报
下出哪个同桌愿意来把第二个三角形的验证过程及结论和大家汇报一下? (一个汇报过程,一个说结论)表述清晰,声间宏亮,让我们感受到你的自信。
老师给大家提供的两个三角形都验证三角形任意两边的和都大于第三边,不知大家自己的画的三角形验证结果怎样?哪桌愿意来汇报一下,并说一说结论。
学生汇报
师:大家的验证结果都一样呀,有没有不同的?可见欧基里得这句话是对的,可信的。其实同学们这就是三角形边的关系,边的性质。
三、课件演示体会三角形两边的和不能小于和等于第三边。
师:同学们刚刚验证了三角形任意两边的和大于第三边,那么两边的和能小于第三边或等于第三边吗?
找两个同学说一下想法
课件出示两边的和小于第三边的不能围成三角形
课件演示两边的和等于第三边的不能围成三角形
课件演示两边的和大于第三边的能围成三角形
通过观察可见,三角形任意两边的和都要大于第三边,有一组不是都拼不上
三角形。
四、课上练习
1、下面请同学们利用刚刚学的知识判断一下数学书66页题,哪组可以拼成三角
形?
学生汇报并说出理由
引出只要看两条较短边的和是否大于第三边
2、看你能否快速说出下面三组是否能围成三角表。
3、三角形不仅只出现在数学课堂,在我们的生活当中到处都有,看这有一块草坪被踩,你能用今天所学的知识来解释一下吗?
五、课堂小结
师:一节课很快结束了,同学们回想一下,我们这节课学的内容是与三角形什么有关的知识?
生:与三角形的边有关的知识。
教师写板书:三角形边的关系
师:那同学们说一说你有怎样的收获?
生站起自由回答
师:同学们一节课真是掌握了不少知识,我想这与同学的探索的精神和认真的态度是分不开,希望同学们在今后的学习中继续努力,你们是最棒的!
文档信息
- 格式: PDF
- 页数: 未知页
- 字数: 未知
- 上传时间: 2018-04-06 11:50:00
- 下载次数: None
- 浏览次数: 47
- 积分: 3
- 收藏: 0
作者信息
5ygggwenku_6691
来自:学校:佳木斯市光复小学
相关文档
下载提示
下载文档后,您可以获得:
- 完整无水印文档
- 高清阅读体验
- 随时保存查看
- 支持打印下载