构建知识体系教案2
构建知识体系教案2
未知
摘要:暂无摘要
关键词:构建知识体系教案2
正文
第17章勾股定理章末复习
【教学内容】勾股定理章末复习
【教学目标】
1、回顾本章知识,在回顾过程中主动构建起本章知识结构;
2、思考勾股定理及其逆定理的发现证明和应用过程,体会出分类思想、数形结合思想、转化思想等在解决数学问题中的作用。
教学难点:勾股定理及其逆定理的应用
教学重点:勾股定理及其逆定理的运用
教学方法:讲练法
教学过程:
一、知识梳理
师:同学们,这一章我们主要学习了哪些知识?
生:勾股定理、逆定理的证明及其运用,运用这两个定理来解决实际问题;命题及互逆命题
那让我们一起来将本章的知识点做一个梳理:
互逆命题: 两个命题中, 如果第一个命题的题设是第二个命题的结论, 而第一个命题的结论又是第二个命题的题设,那么这两个命题叫做互逆命题。 如果把其中一个叫做原命题, 那么另一个叫做它的逆命题。 互逆定理: 如果一个定理的逆命题经过证明是真命题, 那么它也是一个定理, 这两个定理叫做互逆定理, 其中一个叫做另一个的逆定理。
小试牛刀:
说出下列命题的逆命题.并判断逆命题成立? (1)两条直线平行,内错角相等。
(2)对顶角相等。
【原命题成立,逆命题不一定成立。】
勾股数:满足a2b2c2的三个正整数,称为勾股数。
常用勾股基数:3、4、5;5、12、13;7、24、25;8、15、17;9 、40 、41等(它们同乘一个正整数后,仍然满足勾股定理的逆定理)
【设计意图:
】
基础训练
巩固知识
1、求出下列直角三角形中未知的边
2、你能在数轴上表示出17的点吗?
3、已知等边三角形的边长为2cm,则它的高为();面积为()4、在已知下列三角形长度的线段中,不能构成直角三角形的是()A、5,12,13B、2,3,5C、4,7,5D、1,2,35、已知:直角三角形的三边角三别是
3,4,X,则X2=
6、如图,两个正方形的面积分别为64,49,
则AC=
。
7、小明想知道学校旗杆的高,他发现旗杆上的绳子垂到地面还多1 m,当他把绳子的下端拉开5 m后,发现下端刚好接触地面,则旗杆的高为(
)。
A.8 m
B.10 m
C.12 m
D.14 m 【设计意图:】
二、典例讲解
例1、如图,四边形ABCD中,AB=3,BC=4, CD=12,AD=13,∠B=90°,求四边形ABCD的面积
13
A
变式训练、1、如图,有一块地,已知,AD=4m,
3 CD=3m,ADC=90°,AB=13m,BC=12m。
┐
求这块地的面积。
B 4 C 12
D C 13
3 实际运用
4 1、如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点BA
D 12 B
处吃食,要爬行的最短路程( π
取3)是(
)
A.20cm
B.10cm
C.14cm
D.无法确定
3、如图是一个三级台阶,它的每一级的长宽和高分别为20dm、3dm、2dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物,则蚂蚁沿
着台阶面爬到B点最短路程是多少?
A 20 三、课堂小结
3 1、通过这节课的学习活动你有哪些收获?
2 2、你能自己构建本章的只是结构图吗?
四、拓展练习
1、如图,长方体的长为15 cm,宽为
10 cm,高为20 cm,点B B离点C 5 cm,一只蚂蚁如果要沿着长方体的表面从点
A爬到点B,需要爬行的最短距离是多少?
五、作业布置
教科书:P38复习题第7题,第12题
5 B
C 六、教学反思
15 A
文档信息
- 格式: PDF
- 页数: 未知页
- 字数: 未知
- 上传时间: 2020-07-10 16:53:58
- 下载次数: None
- 浏览次数: 175
- 积分: 1
- 收藏: 0
作者信息
5ygggwenku_93261
来自:学校:会理县黎溪镇中学
相关文档
下载提示
下载文档后,您可以获得:
- 完整无水印文档
- 高清阅读体验
- 随时保存查看
- 支持打印下载