探索梯形面积公式及应用精品学案

未知
2025-10-24 18:47:36
82
None
PDF / 未知页
未知字
积分:3
1 页,共 1

探索梯形面积公式及应用精品学案

未知

摘要:暂无摘要

关键词:探索梯形面积公式及应用精品学案

正文

梯形的面积教学设计

教学目标:

1、在理解的基础上掌握梯形面积计算公式的推导,并能运用公式正确计算梯形的面积。

2、通过动手操作、观察、比较,发展学生空间观念。培养学生分析、综合、抽象、概括和解决实际问题的能力。

3、掌握“转化”的思想和方法,进一步明白事物之间是相互联系,可以转化的。

教学重点:

梯形面积计算公式的推导和运用。

教学难点:

理解梯形面积公式的推导过程。

学具准备:

学生每人准备一个梯形纸片

教学过程一、导入新课

1、平行四边形、三角形的面积公式是什么?

2、出示梯形,引导学生认识梯形的上底、下底、高,总结出梯形的定义。

3、提问:我们在生活中见过有哪些图形是梯形。

4、教师导语:我们已经学会了计算长方形、正方形、平行四边形、三角形的面积计算方法,大家回忆回忆三角形的面积公式是怎样推导出来的?

5、那么我们能不能也想办法推导出梯形面积的计算公式呢?(板书:梯形的面积)

二、新课展开

第一层次,推导公式

1、操作学具。

(1)启发学生思考:你能仿照求三角形面积计算公式的推导办法,把梯形也转化成已学过的图形计算出它的面积吗?

(2)学生预设:方法一:把两个完全一样的梯形拼成一个平行四边形;方法二:把一个梯形分成两个三角形;方法三:把一个梯形分成一个平行四边形和一个三角形。„„

(3)学生拿出两个完全一样的梯形,剪一剪,拼一拼,教师巡回观察指导。师:刚才同学们用自己的方法将梯形转化成我们学过的图形,利用这些方法都可以推导出梯形的面积计算公式。下面我们先选择其中的一种方法来共同推导梯形的面积。

(4)教师带领学生共同操作:拿两个完全一样的梯形,先重合,再按住梯形右下角的顶点,使一个梯形逆时针旋转180度,使梯形上、下底成一条直线,然后把第一个梯形的左边沿着第二个梯形的右边平行移动,直到成为一个平行四边形为止。

2、观察思考。

(1)教师提出问题引导学生观察。(同时播放幻灯片)

①用两个完全一样的梯形可以拼成一个平行四边形。这个平行四边形的底和高与梯形的底和高有什么关系?

②每个梯形的面积与拼成的平形四边形的面积有什么关系?

(2)反馈交流,推导公式。

①学生回答上述问题。

②师生共同总结梯形面积的计算公式。板书:梯形的面积=(上底+下底)×高÷2 问:梯形的面积公式中“(上底+下底)×高”求的是什么?为什么要除以2?

(3)在小组内尝试上面另外几种不同的转化方法,如何推导出梯形的面积公式。(可根据教学实际时间情况灵活处理)方法一:梯形的面积=上底×高÷2+下底×高÷2 = (上底+下底)×高÷2 方法二:梯形的面积=平行四边形面积+三角形面积=上底×高+三角形的底×高÷2 =(2个梯形上底+三角形底)×高÷2 =梯形上底×高÷2+(梯形上底×高÷2+三角形底×高÷2)=梯形上底×高÷2+(梯形上底+三角形底)×高÷2 梯形下底=(梯形上底+梯形下底)×高÷2

字母表示公式。教师叙述:如果有S表示梯形的面积,用a、b和h分别表示梯形的上底、下底和高,怎样用字母表示梯形面积的计算公式呢?学生回答后,教师板书:“S=(a+b) h÷2”。

第二层次,公式应用。

(1)出示课本第96页的例题。同学们知道我国最大的水电站是哪个吗?下面是水电站大坝的横截面图,教师指导学生理解“横截面”。

(2)学生尝试解答。

(3)展示台出示例题的解答,反馈矫正。

(4)完成例题下面的“做一做”。强调计算时不要忘记除以2。

三、巩固练习

用课件出示。(见课件)

四、全课小结

(略)

板书设计:

梯形的面积计算

平行四边形的面积=底×高

S=(a+b)h÷2

梯形的面积=(上底+下底)×高÷2

1 页,共 1

文档信息

  • 格式: PDF
  • 页数: 未知页
  • 字数: 未知
  • 上传时间: 2025-10-24 18:47:36
  • 下载次数: None
  • 浏览次数: 82
  • 积分: 3
  • 收藏: 0

作者信息

教师头像

5ygggwenku_1710

来自:学校:石家庄市中塔口小学

下载提示

下载文档后,您可以获得:

  • 完整无水印文档
  • 高清阅读体验
  • 随时保存查看
  • 支持打印下载