容积和容积单位特级教师教学实录
容积和容积单位特级教师教学实录
未知
摘要:暂无摘要
关键词:容积和容积单位特级教师教学实录
正文
《容积和容积单位》教案
【教学目标】
1. 知识与技能
使学生理解容积意义,掌握常用的容积单位以及它们之间的进率。掌握容积和体积的联系与区别,知道容积单位和体积单位之间的关系。感受1毫升的实际意义,和应用所学之事解决生活中的简单问题。
2.过程与方法
培养学生的观察能力和解决问题的能力.
3.情感态度与价值观
培养学生独立思考、严肃认真的学习态度。
【教学重点】
建立容积和容积单位观念,容积单位换算
【教学难点】
建立容积和容积单位观念.
【教学方法】
启发式教学、自主探索、合作交流、讨论法、讲解法。
【课前准备】
多媒体课件水量杯橡皮泥乒乓球
【课时安排】
1课时
【教学过程】
(一)复习旧知,导入新课。
1 .物体所占空间的大小叫做物体的(体积)。
2.常用的体积单位有(立方米)、(立方分米)、(立方厘米)。相邻的两个体积单位间的进率是(1000 )。
3.长方体的体积=(长×宽×高),用字母表示是(v=abh)。
4.正方体的体积=(棱长×棱长×棱长),用字母表示是(v=a³)。
5、在日常生活中,有许多能盛放物体的容器,像箱子、油桶、仓库等。箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。
师:这节课我们就来研究一下容积和容积单位。(板书课题)
(二)探究新知
1.认识容积单位:
(1)师:计量物体的容积,一般就用体积单位。像这个集装箱的容积就是5立方米。
(2)这些容器盛放的是液体。计量液体的体积,常用的单位是升或毫升。请你说一说这些液体有多少。
(3)师:升或毫升可以写成L或mL。1升=1000毫升
(4)你能读出下面这三种容器里的液体的体积吗?
可以用量筒或量杯来度量液体的体积。
2.认识容积和体积的区别。
(1)你对容积有什么认识?
师:是不是所有的物体都有容积呢?
3.体验升和毫升。
(1)小组活动:
①将一瓶矿泉水倒在纸杯中,看看可以倒满几杯。
②估计一下,一纸杯水大约有多少毫升,几杯水大约是1L。
(2)汇报结果:
(3)说一说生活中哪些物品上标有升、毫升。
4.容积和体积的关系:
(1)师:容积和体积有着这样的关系:1L=1dm31mL=1cm3
(2)师:长方体或正方体容器容积的计算方法,跟体积的计算方法相同。但要从容器里面量长、宽、高。
(3)小组活动:物体的体积和容积有什么相同点?有什么不同点?
5.学习容积的计算一种小汽车上的长方体油箱,里面长5dm、宽4dm、高2dm。这个油箱可以装汽油多少升?
生:这道题求可以装汽油多少升就是求这个油箱的容积。它的计算方法和体积的计算方法相同。长×宽×高=长方体的体积。
5×4×2=40(dm³)
40dm³=40L
答:这个油箱可以装汽油40升。
6.学习不规则物体的体积的测量。
现实生活中还有很多像橡皮泥、梨、石块等形状不规则的物体,怎样求得它们的体积呢? (各小组拿出橡皮泥和梨)小组讨论:设法求出下面两种物体的体积。
(1)阅读与理解:师:要解决什么问题?这些物体分别有什么特点?
(2)分析与解答
(3)回顾与反思
师:用排水法求不规则物体的体积需要计录哪些数据?
生:需要记录水的体积以及放入不规则物体后总的体积。上升的水的体积就是不规则物体的体积。
师:可以利用上面的方法测量乒乓球和冰块的体积吗?
生:不能用排水法测量乒乓球和冰块的体积。因为兵乓球不能沉入水中,而冰块会融化成水。
7.小结:通过学习可以知道:
1.容器所能容纳物体的体积叫做物体的容积。
2.容积的计算方法和体积相同。
3.固体的容积单位和体积单位一样,液体的容积单位是升和毫升。1L=1000mL。1dm³=1L
8.牛刀小试。
(1)某邮政运货车,车厢是长方体。从里面量长3m,宽2.5m,高2m。它的容积是多少立方米?
3×2.5×2=15(m)
答: 它的容积是15m。
(2)一个长方体容器,底面长2分米,宽1.5分米,放入一个土豆后,水面升高了0.2分米,这个土豆的体积是多少?
升高的水的体积就是土豆的体积。
2×1.5×0.2=0.6(dm³)
答: 这个土豆的体积是0.6dm。
(三)课堂练习
谈话:同学们,你们学得怎么样了?我们一起到智慧乐园挑战一下自己吧!有没有信心呢?
1. 填一填 333
2.0.8升=(800)毫升
51000毫升=(51)升
2.8立方米=(2800)升
1200毫升=(1200)立方厘米
1.24立方米=(1240)升=(1240000)毫升
3.06升=(3)升(60)毫升
2.一个长方体玻璃鱼缸,里面装了60升水。已知鱼缸从里面量长5分米,宽3分米,它的水深多少分米?
水深多少分米也就是求有水部分的长方体的高。
60升=60立方分米
60÷(5×3)
=4(分米)
答: 它的水深4分米。
(四)拓展提高。
(五)一个长方体油箱,长6分米,宽5分米,高4分米。做这个油箱需要多少平方分米铁皮?每升油重0.85千克,这个油箱可装油多少千克?
小组讨论交流:每个问题都是要求这个长方体的什么呢?
汇报:
(1)求做这个油箱需要多少铁皮就是求这个长方体的表面积。
(6×5+6×4+5×4)×2
=74×2
=148(平方分米)
答:做这个油箱需要148dm²的铁皮。
(2)求这个油箱可装油多少千克要先求这个长方体的容积。
6×5×4
=120(dm³)
120×0.85=102(千克)
答:这个油箱可装油102千克。
(五)课堂总结
师:通过学习,你有什么收获?
1.容器所能容纳物体的体积叫做物体的容积。
2.容积的计算方法和体积相同。
3.固体的容积单位和体积单位一样,液体的容积单位是升和毫升。1L=1000mL。1dm³=1L (六)板书设计
容积和容积单位
容器所能容纳物体的体积叫做物体的容积。
长方体或正方体的容积=底面积×高
液体的容积单位是升和毫升。
1L=1000mL。1dm³=1L
文档信息
- 格式: PDF
- 页数: 未知页
- 字数: 未知
- 上传时间: 2018-04-28 16:57:00
- 下载次数: None
- 浏览次数: 112
- 积分: 2
- 收藏: 0
作者信息
5ygggwenku_5062
来自:学校:四会市碧海湾学校
相关文档
下载提示
下载文档后,您可以获得:
- 完整无水印文档
- 高清阅读体验
- 随时保存查看
- 支持打印下载