找质数优秀教案

未知
2018-04-28 15:44:00
177
None
PDF / 未知页
未知字
积分:3
1 页,共 1

找质数优秀教案

未知

摘要:暂无摘要

关键词:找质数优秀教案

正文

《数学课程标准》指出:数学教学是数学活动的教学。本课内容知识性较强,规律性较强,质数与合数的意义比较抽象,学生接受起来会有一定的难度,因此在教学时一定要通过有特色的教学活动,让学生积极主动地参与到学习活动中,经历探索过程,主动总结规律,获取知识。

因此,本课教学在设计上有两大特点:

1.动手操作,探索规律。创设让学生拼长方形的操作活动,将抽象的找质数活动转换成具象的实践活动,让学生在活动中感悟拼成的长方形的种数与小正方形个数的因数个数之间的关系,并将此活动作为新课的前置作业,让学生有充分的时间通过拼长方形找因数。课堂上引导学生发现用不同个数的小正方形拼长方形时,有的个数只能拼成一种长方形,这些个数只有1和它本身两个因数;有的个数能拼成两种或两种以上的长方形,这些个数有两个以上的因数,进一步感受因数的个数也是一个数的内在特征,可以作为将自然数分类的一个标准。最后在合作、交流的基础上,将这些数分为两类,揭示质数与合数的意义,指出“1既不是质数,也不是合数”。再用概念判断13~20各数是质数还是合数,熟记20以内的质数。

2.运用数学思维发现问题并解决问题。让学生经历提出猜想、验证猜想的过程,在分类中认识质数与合数,关注知识、方法的形成过程,积累丰富的感性认识,符合学生的学习心理,同时有利于教师以学生自主活动为主体,以合作学习为方式,引导学生经历探索的过程。整个教学活动的设计和安排都力图发展学生的数学思维,提升学生的数学学习能力和发现并解决问题的能力。

课前准备:教师(PPT课件),学生完成前置作业:找出2~12各数的因数(表格)。

教学过程

一、设疑导入,揭示新知

同学们,你们听说过“哥德巴赫猜想”吗?有人把“哥德巴赫猜想”比作数学王冠上的一颗明珠。那么究竟“哥德巴赫猜想”说的是什么呢?(ppt:每一个大于2的偶数都可以写成两个质数之和) 你知道是意思吗?有疑问吗?

(偶数,大于2的偶数,质数)

揭示课题:今天我们就来学习什么是质数。

二、自主探究,合作交流

1、小组交流前置作业,核对每一个数据,如果有错误,互相帮助搞清楚并订正。拍照上传。

小结:通过交流,我们看到了2~12个正方形各自能够拼出多少种长方形,从而知道了这些数的因数有哪些。

2、观察交流

(1)观察表格中的数据,你有什么发现?

重点观察:拼成的长方形的种数和因数个数之间有什么关系?

把你的发现用关键词记录在草稿本上,小组内交流,小组代表在全班分享(指着ppt说。1种长方形,两个因数。边说边写。

预设:

5个小正方形只能拼成一种长方形,5的因数只有1和5两个;8个小正方形可以拼成两种长方形,8的因数有1,2,4,8四个。也就是说,拼成的长方形种类越少,因数的个数就越少。只能拼成一种长方形的,就只有两个因数,是1和它本身。

小结:有些个数,只能拼成一种长方形,比如2,3,5,7,11,这些个数的因数就只有1和它本身,有两个;有些个数能拼成两种或者两种以上的长方形,比如4,6,8,9,10,12,这些个数的因数除了1和它本身以外,还有别的因数,至少有3个。(板书)

3.明确概念

(1)揭示概念:刚才,我们以因数的个数为标准,把2~12这些数自然而然分成了两类,像2,3,5,7,11这些数,是质数;像4,6,8,9,10,12这些数,叫合数那什么样的数叫质数什么样的数叫质数呢?【ppt出示教材中质数(素数)、合数的概念】

(2)齐读,你读懂了什么?“只有”“其他”是什么意思?质数合数各有几个因数?

(3)1

生1:质数只有两个因数,合数至少有3个因数。

生2:1是质数还是合数?1既不是质数,也不是合数。

师:1为什么既不是质数,也不是合数呢?引导学生明确:1只有它本身一个因数。

4、自然数分类:

质数合数我们是根据他们因数的个数得到的,看来质数合数和1就组成了自然数,看来按照因数个数可以将自然数分为3类:质数,合数,1。

小结:通过刚才的学习,我们知道了什么是质数,什么是合数,在1~12的数中,找出了2,3,5,7,11这5个质数。再往后找,20以内还有哪些质数呢?

5、判断13~20各个数是质数还是合数?

独立尝试后汇报结果,说说是怎么判断的?(小结:看因数的个数)

熟记20以内的质数:2,3,5,7,11,13,17,19

你发现了什么?2是偶数,其余都是奇数。

三、巩固练习,拓展延伸

1.书,判断自己的学号,是质数还是合数,为什么?(用hati器抽人回答。)同桌交流,有什么好方法?小结:只要是2、3、5的倍数的数肯定是合数。(提炼方法)

2.下面的数中,质数有几个?(用反馈器选择)

35,78,87,91,57,31,111,121

小结:判断一个数是质数还是合数的方法。

首先可以用“2,3,5的倍数的特征”判断这个数是否有因数2,3,5;如果还无法判断,则可以用7,11等比较小的质数去除,看有没有因数7,11等。只要找到一个1和它本身以外的因数,就能判断这个数是合数;除了1和它本身以外找不到其他因数,这个数就是质数。(方法拓展)

3、判断。(用反馈器选择)

(1)质数都是奇数。

(2)偶数都是合数。

(3)一个合数的因数一定大于3个。

(4)最小的质数是1.

(5)既是偶数又是质数的数是2.

(6)10以内既是奇数又是合数的数是9.

总结:

3、猜一猜

(1)两个质数的和是8,乘积是15。()和()

(2)两个质数的和是15,乘积是26。()和()

四、课堂总结:通过本课的学习,你们有什么收获?

五、哥德巴赫猜想是数学王冠上的一颗明珠,我国的数学家陈景润在证明这个猜想时贡献最大,但是这个猜想目前世界上还没有人能够证明它,你们之中将来会不会有人能摘取这颗数学王冠上的明珠呢?老师满怀期待!此时此刻,我们可以做的,就是写出几个哥德巴赫猜想的式子,赶紧试一试吧。(学生尝试,教师巡视拍照上传)

六、板书设计:

找质数

质数:只有1和它本身两个因数的数。(只有2个因数)……

自然数合数:除了1和它本身,还有其他因数的数。(至少3个因数)……

(既不是质数,也不是合数)

1 页,共 1

文档信息

  • 格式: PDF
  • 页数: 未知页
  • 字数: 未知
  • 上传时间: 2018-04-28 15:44:00
  • 下载次数: None
  • 浏览次数: 177
  • 积分: 3
  • 收藏: 0

作者信息

教师头像

5ygggwenku_5554

来自:学校:成都师范银都小学

下载提示

下载文档后,您可以获得:

  • 完整无水印文档
  • 高清阅读体验
  • 随时保存查看
  • 支持打印下载